簡易檢索 / 詳目顯示

研究生: 李昊軒
Hao-Shuan Lee
論文名稱: 以葵花子殼製備固體酸觸媒應用於產製生質柴油
A Study on Solid Acid Catalyst Prepared from Sunflower Seed Shell and Its Application on Biodiesel Production
指導教授: 朱義旭
Yi-Hsu Ju
口試委員: 王孟菊
Meng-Jiy Wang
吳耀豐
Alchris Woo Go
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 59
中文關鍵詞: 生質柴油酯化葵花子殼固體酸觸媒碳化磺化再利用性
外文關鍵詞: biodiesel, esterification, sunflower seed shell, solid acid catalyst, carbonization, sulfonation, reusability
相關次數: 點閱:370下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用葵花子殼作為材料製備固體酸觸媒並測試其活性。首先,種子殼在高溫下進行不完全碳化,接著將得到的生物碳磨碎後與98%濃硫酸進行磺化反應,最後經稀釋、過濾及烘乾後,製備成固體酸觸媒。透過近似分析、元素分析、BET、TG、FT-IR和酸密度測試的方法進行固體酸觸媒的物理和化學特性分析。在碳化溫度400℃, 碳化時間2小時和濃硫酸磺化溫度90℃、磺化時間 20小時的條件下可製備出最高酸密度為1.06 mmol SO3H g-1的固體酸觸媒。固體酸觸媒的活性則是透過甲醇與油酸的酯化反應來測試。在固體酸觸媒量為5%(相對油酸的重量百分比),甲醇/油酸的摩爾比為8,反應溫度為100℃和 3小時的反應時間條件下,最高的油酸轉化率為75.63%。固體酸觸媒的儀器分析結果顯示,COOH和 -SO3H基團成功存在於固體酸觸媒的芳香碳結構中。此外,固體酸觸媒重複使用性之結果實驗顯示在相同的酯化條件下重複使用五次,油酸的轉化率從75.63%降至52.88%。


Carbon-based solid acid catalyst derived from sunflower seed shell was prepared by partial carbonization followed by sulfonation. Activity of the prepared solid catalyst was tested by the esterification of oleic acid and methanol. Physical and chemical characteristics of the prepared catalysts were analyzed by proximate analysis, elemental analysis, BET, TG, FT-IR and acid density tests. Catalyst with the highest acid density of 1.06 mmol SO3H g-1 could be prepared under the following conditions: carbonization at temperature 400 °C for 2 h and sulfonation using concentrated sulfuric acid at 90 °C for 20 h. Esterification conversion of 75.63% could be achieved by using 5 wt.% catalyst, a molar ratio of methanol to oleic acid of 8, a reaction temperature of 100 °C and a reaction time of 3 h. Characterization results showed that -COOH and -SO3H groups existed in the catalyst aromatic carbon structure. In addition, after reusing the solid catalyst for five times the conversion of oleic acid decreased from 75.63% to 52.88% under the same esterification conditions.

中文摘要 Abstract Acknowledgement Content List of Figures List of Tables CHAPTER 1. INTRODUCTION 1-1 Research background 1-2 Research projects CHAPTER 2. LITERATURE REVIEW 2-1 Agriculture biomass and sunflower seed shell 2-2 Biochar derived biomass as solid acid catalyst 2-2-1 Carbonization 2-2-2 Sulfonation 2-3 Transesterification and Esterification for biodiesel produce 2-4 Using heterogeneous catalyst for biodiesel produce CHAPTER 3. MATERIALS AND METHODS 3-1 Materials 3-2 Biomass characterization 3-2-1 Lipid content 3-2-2 Proximate analysis 3-3 Catalyst preparation 3-3-1 Carbonization 3-3-2 Sulfonation 3-3-3 Characterization of carbon-based solid acid 3-4 Catalytic performance 3-4-1 Esterification 3-4-2 Reusability test 3-5 Gas chromatography analysis CHAPTER 4. RESULTS AND DISCUSSION 4-1 Catalyst characterization 4-1-1 Lipid content and elemental analysis and proximate analysis 4-1-2 BET analysis 4-1-3 FTIR analysis 4-1-4 TG analysis 4-2 Results of carbonization 4-3 Results of sulfonation 4-4 Results of esterification reaction 4-4-1 Effect of methanol to oleic acid molar ratio 4-4-2 Effect of catalyst loading 4-4-3 Effect of temperature 4-4-4 Effect of reaction time 4-5 Reusability of catalyst CHAPTER 5. CONCLUSION AND RECOMMENDATION REFERENCE

[1] A. Murugesan, C. Umarani, T. R. Chinnusamy, M. Krishnan, R. Subramanian & N. Neduzchezhain (2008). Production and analysis of bio-diesel from non-edible oils- A review. Renewable and Sustainable Energy Reviews, 13, 825-834
[2] R. L. Naylor & M. M. Higgins (2017). The political economy of biodiesel in an era of low oil prices. Renewable and Sustainable Energy Reviews, 77, 695-705
[3] K. Gerhard & L. F. Razon (2017). Biodiesel fuels. Progress in Energy and Combustion Science, 58, 36-59
[4] Y. Zhou, S. Niu & J. Li (2016). Activity of the carbon-based heterogeneous acid catalyst derived from bamboo in esterification of oleic acid with ethanol. Energy Conversion and Management, 114, 118-196
[5] S. H. Y. S. Abdullah, N. H. M. Hanapi, A. Azid, R. Umar, H. Juahir, H. Khatoonc & A. Endut (2017). A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production. Renewable and Sustainable Energy Reviews, 70, 1040-1051
[6] D. Zeng, S. Liu, W. Gong, G. Wang, J. Qiu & H. Chen (2014). Synthesis, characterization and acid catalysis of solid acid from peanut shell. Applied Catalysis A: General, 469, 284-289
[7] H. H. Mardhiah, H. C. Ong, H. H. Masjuki, S. Lim & Y. L. Pang (2017). Investigation of carbon-based solid acid catalyst from Jatropha curcas biomass in biodiesel production. Energy Conversion and Management, 144, 10-17
[8] S. R. Paudel, S. P. Banjara, O. K. Choi, K. Y. Park, Y. M. Kim & J. W. Lee (2017). Pretreatment of agricultural biomass for anaerobic digestion: Current state and challenges. Bioresource Technology, 245(part A), 1194-1205
[9] M. Cantamutto & M. Poverene (2007). Genetically modified sunflower release: Opportunities and risks. Field Crops Research, 101(2), 133-144
[10] J. S. Cha, S. H. Park , S.C. Jung , C. Ryu , J. K. Jeon , M. C. Shin & Y. K. Park (2016). Production and utilization of biochar: A review. Journal of Industrial and Engineering Chemistry, 40, 1-5
[11] M. Tripathi, J. N. Sahu & P. Ganesan (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews, 55, 467-481
[12] A. Demirbas (2004). Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis, 72(2), 243-248
[13] J. Zhang, J. Liu & R. Liu (2015). Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. Bioresource Technology, 176, 288-291
[14] G. Chen, J. Andries, Z. Luo & H. Spliethoff (2003). Biomass pyrolysis/gasification for product gas production: the overall investigation of parametric effects. Energy Conversion and Management, 44(11), 1875-1884
[15] M. Inguanzo, J. A. Menéndez, E. Fuente & J. J. Pis (2001). Reactivity of pyrolyzed sewage sludge in air and CO2. Journal of Analytical and Applied Pyrolysis, 58-59, 943-954
[16] Z. A. El-Rub, E. A. Bramer & G. Brem (2008). Experimental comparison of biomass chars with other catalysts for tar reduction. Fuel, 87(10-11), 2243-2252
[17] G. Q. Lu, J. C. F. Low, C. Y. Liu & A. C. Lua (1995). Surface area development of sewage sludge during pyrolysis. Fuel, 74(3), 344-348
[18] T. J. Bandosz & K. Block (2006). Effect of pyrolysis temperature and time on catalytic performance of sewage sludge/industrial sludge-based composite adsorbents. Applied Catalysis B: Environmental, 67(1-2), 77-85
[19] J. Lee, K. H. Kim & E. E. Kwon (2017). Biochar as a Catalyst. Renewable and Sustainable Energy Reviews, 77, 70-79
[20] S. H. Shuit & S. H. Tan (2014). Feasibility study of various sulphonation methods for transforming carbon nanotubes into catalysts for the esterification of palm fatty acid distillate. Energy Conversion and Management, 88, 1283-1289
[21] J. R. Kastner, J. Miller, D. P. Geller, J. Locklin, L. H. Keith & T. Johnson (2012). Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon. Catalysis Today, 190, 122-132
[22] J. Emrani & A. Shahbazi (2012). A single bio-based catalyst for bio-fuel and bio-diesel. Journal of Biomedial Materials Research, 2 (1), 1-7
[23] A. M. Dekhoda & N. Ellis (2013). Biochar-based catalyst for simultaneous reactions of esterification and transesterification. Catalysis Today, 207, 86-92
[24] A. Takagaki, M. Toda, M. Okamura, J. N. Kondo, S. Hayashi, K. Domen & M. Hara (2006). Esterification of higher fatty acids by a novel strong solid acid. Catalysis Today, 116, 157-161
[25] C. A. Deshmane, M. W. Wright, A. Lachgar, M. Rohlfing, Z. Liu, J. Le & B. E. Hanson (2013). A comparative study of solid carbon acid catalyst for the esterification of free fatty acids for biodiesel production. Evidence for the leaching of colloidal carbon. Bioresource Technology, 147, 597-604
[26] Y. M. Sani, W. M. A. W. Daud, A. R. Abdul Aziz (2013). Solid acid-catalyzed biodiesel production from microalgal oil—The dual advantage. Journal of Environmental Chemical Engineering, 1(3), 113-121
[27] I. Ambat, V. Srivastava & M. Sillanpää. (2018). Recent advancement in biodiesel production methodologies using various feedstock: A review. Renewable and Sustainable Energy Reviews, 90, 356-369
[28] A. Petchamala, N. Laosiripojana, B. Jongsomjit, M. Goto, J. Panpranot & O. Mekasuwandumrong (2010). Transesterification of palm oil and esterification of
palm fatty acid in near- and super-critical methanol with SO4-ZrO2 catalysts. Fuel
, 89, 2387-2392
[29] O. S. Stamenkovic, K. Rajkovic, A. V. Velickovic, P. S. Milic & V. B. Veljkovic (2013). Optimization of base-catalysed ethanolysis of sunflower oil by regression and artificial neural network models. Fuel Processing Technology, 114, 101-108
[30] J. Nowicki, J. Lach, M. Organek & E. Sabura (2016). Transesterification of rapeseed oil to biodiesel over Zr-dopped MgAl hydrotalcites. Applied Catalysis A: General, 524, 17-24
[31] A. Keskin, M. Gürü, D. Altiparmak & K. Aydin (2008). Using of cotton oil soapstock biodiesel–diesel fuel blends as an alternative diesel fuel. Renewable Energy, 33(4), 553-557
[32] X. Y. Liu, M. Huang, H. L. Ma, Z. Q. Zhang, J. M. Gao, Y. L. Zhu, X. J. Han & X. Y. Guo (2010). Preparation of a carbon-based solid acid catalyst by sulfonating activated carbon in a chemical reduction process. Molecules, 15, 7188-7196
[33] Y. H. Taufiq-Yap, H. V. Lee, M. Z. Hussein & R. Yunus (2011). Calcium-based mixed oxide catalysts for methanolysis of Jatropha curcas oil to biodiesel. Biomass Bioenergy, 35 (2), 827-834
[34] Z. Yaakob, M. Mohammad, M. Alherbawi, Z. Alam & K. Sopian (2013). Overview of the production of biodiesel from Waste cooking oil. Renewable and Sustainable Energy Reviews, 18, 184-193
[35] E. Betiku, O. R. Omilakin, S. O. Ajala, A. A. Okeleye, A. E. Taiwo & B. O. Solomon (2014). Mathematical modeling and process parameters optimization studies by artificial neural network and response surface methodology: a case of non-edible neem (Azadirachta indica) seed oil biodiesel synthesis. Energy, 72, 266-273.
[36] J. Chen, J. Li, W. Dong, X. Zhang, R. D. Tyagi, P. Drogui & R. Y. Surampalli (2018). The potential of microalgae in biodiesel production. Renewable and Sustainable Energy Reviews, 90, 336-346
[37] M. Kouzu, T. Kasumo, M. Tajika, Y. Sugimoto, S. Yamanaka & J. Hidaka (2008). Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel, 87, 2798-2806.
[38] Z. Helwani, M. R. Othman, N. Aziz, J. Kim & W. J. N. Fernando (2009). Solid heterogeneous catalysts for transesterification of triglycerides with methanol: a review.
Applied Catalysis A: General, 363, 1-10
[39] M. Zabeti, W. A. W. Daud & M. K. Aroua (2009). Activity of solid catalysts for biodiesel production: a review. Fuel Processing Technology., 90, 770-777
[40] M. Tariq, S. Ali & N. Khalid (2012). Activity of homogeneous and heterogeneous catalysts, spectroscopic and chromatographic characterization of biodiesel: a review. Renewable and Sustainable Energy Reviews, 16, 6303-6316
[41] L.J. Konwar, J. Boro & D. Deka (2014). Review on latest developments in biodiesel production using carbon-based catalysts. Renewable and Sustainable Energy Reviews, 29, 546-564
[42] Y. M. Sani, W. M. A.NW. Daud & A. R. A. Aziz (2014). Activity of solid acid catalyst for biodiesel production: a critical review. Applied Catalysis A: General, 470, 140-161
[43] A. Galadima & O. Muraza (2014). Biodiesel production from algae by using heterogeneous catalysts: A critical review. Energy, 78, 72-83
[44] T. Tan, J. Lu, K. Nie, L. Deng & F. Wang (2010). Biodiesel production with immobilized lipase: A review. Biotechnology Advances, 28 (5), 628-634
[45] S. Shah, S. Sharma & M. N. Gupta (2004). Biodiesel Preparation by Lipase-Catalyzed Transesterification of Jatropha Oil. Energy & Fuels, 18, 154-159
[46] I .M. Atadashi, M. K. Aroua , A. R. Abdul Aziz & N. M. N. Sulaiman (2013). The effects of catalysts in biodiesel production: A review. Journal of Industrial and Engineering Chemistry, 19, 14-26
[47] A. Demirbas (2004). Combustion characteristics of different biomass fuels. Progress in Energy and Combustion Science, 30, 219-230
[48] A. I. Casoni, M. Bidegain, M. A. Cubitto, N. Curvetto & M. A. Volpe (2015). Pyrolysis of sunflower seed hulls for obtaining bio-oils. Bioresource Technology, 177, 406-409
[49] M. Li, D. Chen, X. Zhu (2013). Preparation of solid acid catalyst from rice husk char and its catalytic performance in esterification. Chinese Jouranl of Catalysis, 34, 1674-1682
[50] H. Yu, S. Niu, C. Lu, J. Li, Y. Yang (2016). Preparation and esterification performance of sulfonated coal-based heterogeneous acid catalyst for methyl oleate production. Energy Conversion and Management, 126, 488-496
[51] X. Liu, H. He, Y. Wang, S. Zhu & X. Piao (2008). Transesterification of soybean oil to biodiesel using CaO as solid base catalyst. Fuel, 87,216-221
[52] C.H. Su (2013). Kinetic study of free fatty acid esterification reaction catalyzed by recoverable and reusable hydrochloric acid. Bioresource Technology, 130, 522-528
[53] F. Ezebor, M. Khairuddean, A. Z. Abdullah, P. L. Boey (2014). Oil palm trunk and sugarcane bagasse derived heterogeneous acid catalysts for production of fatty acid methyl esters. Energy, 70, 493-503
[54] C. Zhong, Q. Cao, L. Guo & S. Deng (2014). Preparation of a coal tar pitch-based solid acid catalyst and its esterification activity in ethyl acetate production. Reaction Kinetics and Catalysis Letters, 112, 361-370
[55] N. Kaur & A. Ali (2015). Preparation and application of Ce/ZrO2-TiO2/SO42- as solid catalyst for the esterification of fatty acids. Renewable Energy, 81, 421-431.
[56] X. Mo, D. E. López, K. Suwannakarn, Y. Liu, E. Lotero & J.G. Goodwin (2008). Activation and deactivation characteristics of sulfonated carbon catalysts. Journal of Catalysis, 254, 332-338
[57] L. Wang, X. Dong, H. Jiang, G. Li & M. Zhang (2014). Preparation of a novel carbon-based solid acid from cassava stillage residue and its use for the esterification of free fatty acids in waste cooking oil. Bioresource Technology, 158, 392-395
[58] L. Geng, G. Yu, Y. Wang & Y. Zhu (2012). Ph-SO3H-modified mesoporous carbon as an efficient catalyst for the esterification of oleic acid. Applied Catalysis A: General, 137, 427-428
[59] W. Y. Lou, Q. Guo, W. J. Chen, M. H. Zong, H. Wu & T. J. Smith (2012). A Highly active bagasse derived solid acid catalyst with properties suitable for production of biodiesel. ChemSusChem, 5, 1533-1541
[60] A. I. Casoni, M. Bidegain, M. A. Cubitto, N. Curvetto & M. A. Volpe (2015). Pyrolysis of sunflower seed hulls for obtaining bio-oils. Bioresource Technology, 177, 406-409
[61] A. A. Zabaniotou, E. K. Kantarelis & D. C. Theodoropoulos (2008). Sunflower shells utilization for energetic purposes in an integrated approach of energy crops: Laboratory study pyrolysis and kinetics. Bioresource Technology, 99, 3174-3181
[62] S. Zhu, X. Gao, F. Dong, Y. Zhu, H. Zheng & Y. Li (2013). Design of a highly active silver exchanged phosphotungstic acid catalyst for glycerol esterification with acetic acid. Journal of Catalysis, 306, 155-163
[63] K. Qian, A. Kumar, H. Zhang, D. Bellmer & R. Huhnke (2015). Recent advances in utilization of biochar. Renewable and Sustainable Energy Reviews, 42, 1055-1064

QR CODE