簡易檢索 / 詳目顯示

研究生: 張鮮文
Shian-Wen Chang
論文名稱: 光學元件射出成形體積收縮與光學均勻性之研究
Study on Volumetric Shrinkage and Optical Uniformity for Injection Molding of Optical Parts
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 楊申語
Sen-Yen Yang
曾垂拱
Chwei-Goong Tseng
施至柔
Jyh-Rou Sze
劉士榮
Shih-Jung Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 160
中文關鍵詞: 射出成形光學均勻器體積收縮環形透鏡陣列
外文關鍵詞: toroidal lens array, shrinkage, homogenizer, Injection molding
相關次數: 點閱:523下載:50
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的為設計製造一光源之光學均勻器(Homogenizer),並探討不同的射出成形製程參數對於體積收縮率、軸向收縮率與光學均勻性之影響,使用之分析方法為迴歸分析法。在光學均勻器設計部分,利用高斯光束特性做定量設計,與TracePro軟體之驗證分析得到光學均勻器之幾何外形形狀。然後利用Moldflow軟體分析成品之充填與收縮現象,並與射出實驗作結果比對。在光學均勻器製造部份本研究使用Fanuc Roboshot α15-ίA全電式射出成形機及Asahi Kasei 80NH PMMA塑料進行實驗,實驗結果得知本研究成功驗證光學上之設計需求及將光準直器、透鏡陣列與投影透鏡三個元件整合成一個含微結構之光學元件,並以射出成形技術製造出此光學元件之想法。另由圓柱件之三維收縮實驗得知,增加保壓壓力可以獲得較佳的幾何外形尺寸,但會增加產品之殘留應力。而冷卻時間之增加會使產品收縮量變大,但可減少殘留應力。再由模流分析與實驗設計得知影響體積收縮的參數因子為保壓壓力,保壓壓力越大,可降低體積之收縮;而影響光軸高度之收縮的參數因子為冷卻時間,較長的冷卻時間能得到較高的光軸高度值。同時光學均勻器之均勻性與微溝槽成形性成正比之關係,而保壓壓力越大與冷卻時間越久可增加微溝槽成形率。本研究最佳之微溝槽成形率為88.98%,光學均勻性為68%,光效率為91.88%,未來研究期望能研發適用LED光源之光學均勻器。


    This research is to design and manufacture optical homogenizer for light source, and use regression analysis to investiate different parameters for effects of volumetric shrinkage and Z-axis shrinkage. The homogenizer was designed with Gaussian laser beam and the geometry of homogenizer was verified with TracePro software. Simulation of injection molding by Moldflow was proceeded to evaluate the filling stage and volumetric shrinkage. A Fanuc Roboshot injection molding machine and Asahi Kasei 80NH PMMA were selected to perform the experiment. Experimental results show that the hybrid design of collimator, lens array, and projection lens into one optics for homogenizer has been implemented by injection molding and verified. Form experiments of shrinkage of cylinder part, the packing pressure can be increased to obtain better dimension of geometry, but the residual stress will increase. Increasing the cooling time will induce shrinkage, but that can decrease the residual stress. Form Moldflow simulation and regression analysis of experimental results of the optical homogenizer, important parameter of volumetric shrinkage is packing pressure. Increasing packing pressure can be decrease volumetric shrinkage, but longer cooling time can decrease Z-axis shrinkage. Uniformity of homogenizer and transfer ratio of grooves (TRG) have relationship of direct proportion, increase packing pressure and cooling time can obtain good TRG. This research has achieved the TRG as 88.98%, optical uniformity as 68% and the optical efficiency as 91.88%. Future work focus on development of an optical homogenizer for LED light source.

    誌謝 中文摘要 Abstract 目錄 圖目錄 表目錄 第一章 導論 1.1 前言 1.2 研究目的與方法 1.3 文獻回顧 1.3.1 射出成形收縮之相關文獻 1.3.2 光源整形元件之相關文獻 1-4 光學均勻器之設計想法 1-5 章節介紹 第二章 射出成形之收縮 2.1 射出成形之收縮定義 2.2 影響收縮之因素 2.2.1 塑料種類 2.2.2 產品設計 2.2.3 模具設計 2.2.4 成形參數 2.2.5 小結 2.3 收縮補償方法 第三章 光學均勻器與軟體分析 3.1 光學均勻器之原理 3.2 光學均勻器之設計 3.2.1 雷射光束介紹 3.2.2 光學均勻器之設計理論 3.3 光學軟體之驗證分析 3.3.1 TracePro軟體分析 3.3.2 Zemax 軟體分析 3.4 模流分析 3.4.1 充填流動分析 3.4.2 光學均勻器之收縮模擬分析 3.5 模具設計 3.5.1 頂出機構 3.5.2 模具水路與電熱棒裝置 第四章 實驗設備與實驗流程規劃 4.1 模仁製造 4.2 實驗設備 4.2.1 FANUC α-15iA全電式射出成形機 4.2.2 模溫機 4.2.3 烘料機 4.2.4 電熱控制器與電熱棒 4.2.5 塑膠材料 4.3 量測設備 4.3.1 應力偏光儀 4.3.2 He-Ne 雷射光源 4.3.3 光束輪廓儀(Beam Profiler) 4.3.4 表面輪廓儀 4.3.5 其他實驗設備 4.4 實驗流程規劃 4.4.1 光學均勻器之設計製造與檢測流程 4.4.2 射出成形收縮實驗流程 4.4.3 實驗準備與量測取樣 4.4.4 實驗參數設定 4.4.5 微溝槽成形率定義 4.4.6 微溝槽量測位置 4.5 實驗設計 第五章 實驗結果與討論 5.1 圓柱件射出成形之三維收縮 5.2 光學均勻器設計之討論 5.3 模流分析結果與射出成形實驗之討論 5.3.1 模流分析短射實驗比對與成形視窗之討論 5.3.2 模流收縮分析與射出實驗結果之討論 5.3.3 地心引力對於流動波前之影響討論 5.4 實驗設計結果之討論 5.5 光學均勻器之均勻性討論 5.6 光效率之討論 第六章 結論與建議 6.1 結論 6.2 建議 參考文獻 附錄A Fortran 程式模擬輸出之透鏡陣列尺寸 附錄B Delpet80NH材料性質表 附錄C 模具BOM表 附錄D 大同-NAK80鋼料之機械性質 附錄E Precitech Freeform 705XG超精密鑽石車削輪磨機規格 附錄F FANUC α-15iA全電式射出成形機台規格 附錄G 銓州光電股份有限公司代理之HE-NE雷射規格 附錄H BeamMapTM 之規格 附錄I 表面輪廓量測儀規格 附錄J Asahi Kasei 80NH壓克力之折射率 附錄K 模仁之ZYGO白光干涉式表面輪廓儀之量測結果 作者簡介

    [1] 江月松(2005) “光電技術”,新文京圖書,31-37。
    [2] 史光國 (2005) “半導體發光二極體及固態照明”,全華圖書,1-9。
    [3] Isuzuglass.com. 2006< http://www.isuzuglass.com/ >
    [4] Fraensrl.com.2006<http://www.fraensrl.com/index.html>
    [5] 陳皇昌 (2002) “模具冷卻速度對微射出成形影響研究”,淡江大學機械工程研究所碩士論文。
    (Chen, Huang-Chang(2002). “Research of Effects on Mold Cooling Rate in Micro-Injection Molding”, Department of Mechanical Engineering, Tamkang University.)
    [6] Koita, Y. T. (1974). “Packing and Discharge in Injection Molding”, Polymer Engineering and Science , 14(12), 840-847.
    [7] Greener, J. (1986). “General Consequence of the Packing Phase in Injection Molding”, Polymer Engineering and Science , 26(12), 886-892.
    [8] Cox, Howard W. and Charles C. Mentzer, (1986). “Injection Molding : The Effect of Fill Time on Properties ”, Polymer Engineering and Science, 26(1), 488-498.
    [9] Ioannis Pandelidis and Qin Zou, (1990). “Optimization of Injection Molding design. Part I : Gate Location Optimization”, Polymer Engineering and Science, 30(15), 873-882.
    [10] Mamat, A. F. , Trochu and B. Sanschagrin, (1994). “Shrinkage Analysis of Injection Molded Polypropylene Parts” ,Society of Polymer Engineers, ANTEC, 513-517
    [11] Kumazawa, H. (1994). “Prediction of Anisotropic Shrinkage of an Injection Molded Parts” ,Society of Polymer Engineers, ANTEC, 817-821
    [12] Bushko, Wit C. andVijay K. Stokes, (1995). “Solidification of Thermoviscoelastic Melts. Part II : Effect of Processing Conditions on Shrinkage and Residual Stresses”, Polymer Engineering and Science, 35(4), 365-383.
    [13] 陳劍峰 (1997) “電腦輔助工程應用於射出成形品收縮之驗證”,國立清華大學動力機械工程研究所碩士論文。
    (Chen, Chien-Feng(1997). “Experimental Verification of CAE System on the Shrinkage of Injection Moldings.”, Department of Power Mechanical Engineering, National Tsing Hua University.)

    [14] Jansen, K.M.B. , D.J. Van Dijk and M.H. Husselman, (1998). “Effect of Processing Conditions on Shrinkage in Injection molding”, Polymer Engineering and Science, 38(5), 838-846.
    [15] Gordillo, A. , D. Ariza, M. Sanchez-Soto, Maspoch, M. Ll. (1999). “Shrinkage Predictions of Injection Molded Parts in Semi-Crystalline Polymers: Experimental Verification”, IEEE, 1281-1287
    [16] Choi, Du-Soon and Yong-Taek Im, (2000). “Prediction of Shrinkage and Warpage in Consideration of Residual Stress in Integrated Simulation of Injection Molding”, Composite Structures, 47, 655-665.
    [17] Chang, Tao C. (2001). “Shrinkage Behavior and Optimization of Injection Molded Parts Studied by the Taguchi Method”, Polymer Engineering and Science, 41(5), 703-710.
    [18] 刑玉璽(2003) “射出成型之塑膠光學讀取透鏡收縮”,國立成功大學航空太空工程研究所碩士論文。
    (Hsing, Yu-His(2003). “Shrinkage of Injection Molded Plastic Optical Pick-up Lens.”, Department of Aeronautics and Astronautics, National Cheng Kung University.)
    [19] 林炫良(2003) “厚件產品保壓過程對於收縮率與殘留應力影響之研究”,中原大學機械工程研究所碩士論文。(Hsuan-Liang Lin(2003). “Study of the Influence of Packing Process on Shrinkage and Residual Stress in Thick Parts.”, Department of Mechanical Engineering, Chung Yuan Christian University.)
    [20] Kwon, Keehae , A. I. Isayaev and K. H. Kim, (2005). “Toward a Viscoelastic Modeling of Anisotropic Shrinkage in Injection Molding of Amorphous Polymers ”, Applied Polymer Science, 98, 2300–2313.
    [21] 曾淑玲 (2005) “非球面塑膠鏡片收縮誤差補償之研究”,國立台灣科技大學機械工程研究所碩士論文。
    (Tseng, Shu-Ling(2005). “Analysis on Shrinkage Error Compensate of Aspheric Plastic Lens.” Department of Mechanical Engineering, National Taiwan University of Science and Technology.)
    [22] Kwon, Keehae , A. I. Isayaev and K. H. Kim, (2006). “Theoretical and Experimental Studies of Anisotropic Shrinkage in Injection Molding of Various Polyesters ”, Applied Polymer Science, 98, 3526–3544.
    [23] Joel Pomerleau and Bernard Sanschagrin, (2006). “Injection Molding Shrinkage of PP: Experimental Progress”, Polymer Engineering and Science, 1275-1283.
    [24] Deng, Ximing , Xiangchun Liang, Zezun Chen, Wenyan Yu, and Renuying Ma, (1986). “Uniform Illumination of Large Targets Using a Lens a Array”, Applied Optics, 25(3), 377-381.
    [25] Ozaki, Yoshiharu and Kiichi Takamoto, (1989). “Cylindrical Fly’s Eye Lens For Intensity Redistribution of an Excimer Laser Beam”, Applied Optics, 28(1),106-110.
    [26] Parkyn, William A., Philip Gleckman and David G. Pelka, (1993). “The Converging TIR Lens For Non-Image Concentration of Light Form Compact Incoherent Sources”, SPIE, 2016, 78-86
    [27] Parkyn, William A. and David G. Pelka, (1997). “New TIR Lens Applications For Light-Emitting Diodes”, SPIE, 3139, 135-140
    [28] Angel Garcia-Botella, Daniel Vazquez and Eusebio Bernabeu, (2000). “A New Concentrator-Collimator Lighting System Using LED Technology”, Illuminating Engineering Society, 29(2), 135–140.
    [29] Parkyn, William A. and David G. Pelka ,(2002).“Uniformly Illuminating Dual-Lens System for LED Collimation”,SPIE,4446,232-238.
    [30] Scott McCoy, David Brown and Dan Brown, (2003). “Double-Sided Micro Lens Array in an Imaging Multi-Beam Integrator Configuration For a Diffuser Application”, SPIE, 5175, 139-148
    [31] Harder, I., M. Lano, N. Lindlein and J. Scgwider, (2004). “Homogenization and Beam Shaping With Microlens Arrays”, SPIE, 5456, 99-107
    [32] Stager, Benno, Michael T. Gale and Mark Rossi,(2005). “Replicated Micro-Optics for Automotive Applications”, SPIE, 5663, 238-245.
    [33] Schertler, Donald J., Tasso R. M. Sales, Stephen Chakmakjian, and G. Michael Morris, (2006)“LED Luminaire with Controlled Light Distribution”, SPIE,6337,E-1-E-19.
    [34] Schreiber, Peter, Sergey Kudaev, Peter Dannberg, and Andereas Gebhardt, (2006). “Microoptics for Homogeneous LED-Illumination”, SPIE, 6196(61960P),1-10
    [35] Tain, Ra-Min, Hei-Tong Ching, Chin-Lung Chen, Rong-Chang Fang, (2007). “Light Source with LED and Optical Protrusions”, US 7205719 B2.
    [36] Niven, Greg (2007) “Trends in Laser Light Sources for Projection Display”, Novalux, Inc.
    [37] Fischer, Jerry M. (2003)“Handbook of Molded Part Shrinkage and Warpage”, William Andrew,17-103。
    [38] 科盛科技 (2002)“CAE模流分析技術入門與應用”,全華圖書,8-1 – 8-13。
    [39] 辛企明 (2004) “光學塑料非球面製造技術”,國防工業出版社,125-129。
    [40] 劉家佑 (2005) “鮑爾透鏡之鏡頭設計與物理光學之詮釋”,國立交通大學光電工程研究所碩士論文。
    (Liu, Chia-Yu (2005). “Lens design of Powell lens and its wave-optics interpretation.” Department of Photonics, National Chiao Tung University.)
    [41] 翁俊仁、謝哲偉、姚志賢 (2006) “熔燒與漸變折射率式光纖透鏡之研製”, 儀科新知,28,87-96。
    [42] 耿繼業、何建娃(2001) “幾何光學”, 全華科技, 241-244。
    [43] 高旭麒 (2006)“繞射光學元件為射壓成形之研究”,國立台灣科技大學機械工程研究所碩士論文。
    (Kao, Shi-chi (2006). “Study on μ-Injection Compression Molding of Diffractive Optical Elements.” Department of Mechanical Engineering, National Taiwan University of Science and Technology.)
    [44] 陳永坤 (2005)“雙面微結構之薄件射出成形研究”,國立台灣科技大學機械工程研究所碩士論文。
    (Chen,Yung-Kun (2005). “Study on Injection Molding of Thin Plate with Double-Side Micro Grooves.” Department of Mechanical Engineering, National Taiwan University of Science and Technology.)
    [45] 古振瑭 (2004)“乾式機械化學拋光在單晶藍寶石晶圓之平坦化加工研究”,國立台灣科技大學機械工程研究所碩士論文。
    (Ku Chen-Tang (2004). “Research on Planarization of Single Crystal Sapphire Wafers with Dry Mechano-Chemical Polishing.” Department of Mechanical Engineering, National Taiwan University of Science and Technology.)
    [46] 陳炤彰(2006) “製造分析上課講義”,國立台灣科技大學機械工程研究所。
    (Chen, Chao-Chang A.(2006). Lecture Note of “Manufacturing Analysis” Department of Mechanical Engineering, National Taiwan University of Science and Technology.)

    QR CODE