簡易檢索 / 詳目顯示

研究生: 林志隆
Chih-lung Lin
論文名稱: 以微波水熱法合成新穎硒化銅銦鎵(CuIn1-xGaxSe2)材料應用於薄膜CIGS太陽能電池之研究
Microwave-assisted Hydrothermal Synthesis of Novel Copper Indium Gallium Selenide (CuIn1-xGaxSe2) Materials for Thin Film CIGS Solar Cells
指導教授: 蕭敬業
Ching-Yeh Shiau
黃炳照
Bing-Joe Hwang
口試委員: 邱秋燕
Yen-Chiou Chiou
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 150
中文關鍵詞: 硒化銅銦鎵非晶相亞硒酸鹽前驅物黃銅礦結構微波促進合成水熱法電泳沉積硒化薄膜太陽能電池
外文關鍵詞: CuIn1-xGxSe2, Amorphous selenite precursors, Chalcopyrite structure, Microwave-assisted synthesis, Hydrothermal method, Electrophoresis deposition, Selenization, Thin film solar cells
相關次數: 點閱:370下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文之研究方向主要分為四元CuIn1-xGaxSe2奈米材料之合成及電泳沉積製備CuIn1-xGaxSe2薄膜之兩個部分進行。首先,於材料合成之研究中,吾人成功建立以微波水熱法合成四元CuIn1-xGaxSe2奈米粒子,此合成法利用水為溶劑進行液相反應,除了解決一般溶熱法中有機溶劑之汙染外,並可於30分鐘之短時間內快速合成。而此法合成之CuIn1-xGaxSe2材料具有新穎的非晶性結構,不僅粒子尺寸十分均一,且可達所需之計量比例。此非晶之奈米粒子,於氫氣之氣氛下經熱處理還原及硒化後,即可轉變成純相之CuIn1-xGaxSe2黃銅礦結構。此研究結果顯示,所建立之合成方法不但可以大幅降低對環境之影響,亦對薄膜製備之均勻度有明顯之助益,具有相當的潛力應用於薄膜CIGS太陽能電池之吸收層材料。
於製備CuIn1-xGaxSe2薄膜研究中,本研究藉由快速、均勻且可精準控制薄膜厚度之電泳沉積法製備CuIn1-xGaxSe2薄膜,並利用所合成之新穎材料作為電泳懸浮液之粒子。研究結果發現,此非結晶性之薄膜經由500 ℃~ 600 ℃之氫氣還原及550 ℃之硒化程序後,即可得到所需之黃銅礦結構,且無CuxSe、In2O3及Ga2O3等雜相產生。此外,藉由Ga於CuIn1-xGaxSe2 摻雜之比例提高,造成薄膜表面不緻密之孔洞可明顯的改善,顯示Ga元素的存在能有效提高薄膜之密度,此發現可作為改善CIGS薄膜製備之依據。
另外,本研究建構一系列CuIn1-xGaxSe2之晶格模型,同時配合密度泛函理論(DFT)方法計算,以提供理論之XRD圖譜、電子能帶結構與電荷轉移,並分析解釋摻雜不同成分Ga進入CuInSe2晶格中,造成結構扭曲及能隙改變之原因。同時,藉由理論計算模擬與實驗值作一比較,其XRD之相關數據,結果為十分相似,表示利用DFT計算可得到合理的原子位置與結構。此模擬參數未來將可應用於不同摻雜元素取代CuInSe2之In元素,並作深入探討。


The study is divided into two parts, including synthesis of CuIn1-xGaxSe2 nanomaterials and preparation of CuIn1-xGaxSe2 thin films. First, novel CuIn1-xGaxSe2 nanoparticles have been successfully prepared by the developed microwave-assisted hydrothermal method. The developed method avoids the use of the organic solvents in the frequently used solvothermal method. Further, uniform CuIn1-xGaxSe2 nanoparticles of exact stoichiometric ratio can be prepared within 30 mins, showing the high efficiency of the developed method. It should be noticed that the amorphous nature for the synthesized CuIn1-xGaxSe2 nanoparticles is shown. However, the chalcopyrite structure for the synthesized CuIn1-xGaxSe2 particles can be obtained after further reduction and selenization. Undoubtedly, the developed microwave-assisted hydrothermal method is environment-friendly and the synthesized CuIn1-xGaxSe2 is of great potential as an absorption layer of thin film CIGS solar cell.
Secondly, the controllable thickness of the film fabricated by EPD technique was carried out with the synthesized CuIn1-xGaxSe2 precursors. With further reduction and selenization process the synthesized CuIn1-xGxSe2 showed only chalcopyrite structure without any impurities. Owing to the limited heating conditions by the melting temperature of the glass substrate (600℃) for longer time (10 hr), the porous nature of the deposited film needs further improvement. Surprisingly, the high porosity can be reduced by increasing Ga content in the CuIn1-xGaxSe2. The finding can be the guide for the future improvement.
On the other hand, theoretical X-ray diffraction patterns, electronic band structure, and charge transfer among hetero-atoms have been achieved by model establishment accompanied with density functional theory (DFT) calculation on CuIn1-xGaxSe2. Further, the effect of Ga doping in CuIn1-xGaxSe2 to distortion of crystalline structure and change in the energy gap can be understood. The strategy could be further extended to the understanding of other elements (M) doping effect for CuIn1-xMx Se2.

中文摘要..........................................................................................................I 英文摘要.......................................................................................................III 誌謝................................................................................................................V 目錄...............................................................................................................VI 圖目錄...........................................................................................................XI 表目錄....................................................................................................XXV 第一章 緒論...................................................1 1.1 前言....................................................................1 1.2 太陽能電池的發展簡介..........................................................................2 1.2.1 太陽能電池基本原理...................................................................2 1.2.2 太陽能電池材料及種類...............................................................4 1.2.2.1 晶圓型太陽能電池..........................................................5 1.2.2.2 薄膜型太陽能電池..........................................................7 1.3 研究動機與目的....................................................................................12 第二章 文獻回顧與理論基礎.....................................................................14 2.1 硒化銅銦鎵吸收層材料結構與組成....................................................14 2.2 硒化銅銦鎵吸收層薄膜製備技術........................................................17 2.2.1 共蒸鍍沉積硒化銅銦鎵吸收層.................................................18 2.2.2 二階段法(硒化法)製備硒化銅銦鎵薄膜..................................20 2.2.3 電鍍法沉積硒化銅銦鎵薄膜......................................................23 2.2.4 硒化銅銦鎵漿料塗佈技術..........................................................25 2.2.4.1 硒化銅銦鎵漿料配製.....................................................25 2.2.4.2 漿料塗佈製備硒化銅銦鎵薄膜.....................................28 2.3 電泳技術於太陽能電池上的應用........................................................32 2.3.1 電泳沉積之原理..........................................................................32 2.3.2 電泳沉積技術於太陽能電池之應用及發展.............................34 2.4 漿料製程之硒化銅銦鎵奈米粒子製備................................................38 2.4.1 固態法合成硒化銅銦鎵粉體....................................................38 2.4.2 單一來源熱裂解法合成硒化銅銦鎵粉體.................................39 2.4.3 水熱/溶熱法合成硒化銅銦鎵粉體.......................................41 2.5 微波輔助加熱促進硒化銅銦奈米粒子合成........................................48 2.5.1 微波合成之原理..........................................................................48 2.5.2 微波輔助加熱促進硒化銅銦鎵奈米粒子合成.........................49 第三章 實驗方法和儀器設備.....................................................................52 3.1 儀器設備................................................................................................52 3.2 實驗藥品................................................................................................54 3.3 實驗方法................................................................................................55 3.3.1 微波水熱法合成硒化銅銦鎵粒子..............................................55 3.3.2 電泳沉積製備硒化銅銦鎵薄膜..................................................57 3.4 材料特性分析與儀器原理....................................................................59 3.4.1 X光繞射(XRD)分析....................................................................59 3.4.2 掃描式電子顯微鏡(SEM)材料表面形態分析.......................60 3.4.3 能量分散光譜(EDX)元素組成分析..........................................61 3.4.4 感應耦合電漿原子發射光譜(ICP)元素組成分析....................62 3.4.5 穿透式電子顯微鏡(TEM)穿透形態分析..................................63 3.4.6 拉曼光譜(Raman spectra)鑑定...................................................64 3.4.7 X射線光電子能譜(XPS)之鑑定................................................65 第四章 結果與討論.....................................................................................67 4.1 微波水熱法合成硒化銅銦鎵粒子之特性分析....................................67 4.1.1 X光粉末繞射(XRD)晶體結構分析...........................................67 4.1.2 掃描式電子顯微鏡(SEM)表面形態分析..................................71 4.1.3 能量分散光譜(EDX)元素組成分析..........................................77 4.1.4 穿透式電子顯微鏡(TEM)穿透形態分析..................................83 4.1.5 X射線光電子能譜(XPS)之鑑定.................................................86 4.2 電泳沉積製備硒化銅銦鎵薄膜............................................................90 4.2.1 X光繞射(XRD)晶體結構分析...................................................90 4.2.1.1 還原程序及硒化程序對電泳薄膜晶體結構之影響.....90 4.2.1.2 鎵之組成變化對硒化銅銦鎵薄膜晶體結構之影響.....93 4.2.2 掃描式電子顯微鏡(SEM)表面形態分析.................................96 4.2.2.1電泳條件對薄膜厚度之分析...........................................96 4.2.2.2 還原及硒化程序之電泳薄膜表面形態分析.................99 4.2.3 能量分散光譜(EDX)元素組成分析........................................106 4.2.4 拉曼光譜(Raman spectra)之鑑定.............................................110 4.3 硒化銅銦鎵系統之理論計算模擬......................................................112 4.3.1 三元CuInSe2之XRD模擬與模型建構(Model construction)..113 4.3.2 四元CuInSe2之XRD模擬與模型建構(Model construction)..118 第五章 綜合討論.......................................................................................124 5.1 新穎硒化銅銦鎵材料性質之探討......................................................124 5.1.1 微波水熱法合成條件及結晶條件之探討...............................124 5.1.2 製備硒化銅銦鎵粒子之相關文獻比較. .................................127 5.2 鎵的組成變化對硒化銅銦鎵影響之探討..........................................129 5.2.1 表面型態之探討........................................................................129 5.2.2 晶體結構變化之探討................................................................130 5.3 電泳沉積硒化銅銦鎵薄膜之探討. ....................................................134 第六章 結論...............................................................................................135 第七章 未來方向.......................................................................................137 第八章 參考文獻.......................................................................................138 附錄.............................................................................................................147

【1】 A. E. Becquerel. “Mémoire sur les effets électriques produits sous l'influence des rayons solaires”, Comptes Rendus, 9, (1839), 561.
【2】 L. Kazmerski, D. Gwinner, A. Hicks, “Reported timeline of solar cell energy conversion efficiencies” National Renewable Energy Laboratory, (2007).
【3】 莊嘉琛編譯, “太陽能工程:太陽電池篇”, 全華科技, (2006).
【4】 J. Zhao, A. Wang, M. A. Green, “24.5% efficiency PERT silicon solar cells on SEH MCZ substrates and cell performance on other SEH CZ and FZ substrates”, Sol. Energy Mater. Sol. Cells, 66 (2001), 27.
【5】 P. R. Gale, R. W. McClelland, D. B. Dingle, J. V. Cormley, R. M. Burgess, N. P. Kim, R. A. Mickelsen, B. F. Stanbery, “High-efficiency GaAs/CuInSe2 and AlGaAs/CuInSe2 thin-film tandem solar cells”, Conference Record, 21st IEEE Photovoltaic Specialists Conference, Kissimimee, May (1990), 53.
【6】 R. R. King, R. A. Sherif, D. C. Law, J. T. Yen, M. Haddad, Z. M. Fetzer, K. M. Edmondson, G. S. Kinsey, H. Yoon, M. Joshi, S. Mesropian, H. L. Cotal, D. D. Krut, J. H. Ermer, N. H. Karam. “New horizons in III-V multijunction terrestrial concentrator cell research”. 21st Euro. Conf. Photovoltaic Solar Energy Conference, Dresden, September, (2006).
【7】 D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si”, Appl. Phys. Lett., 31, (1977), 292.
【8】 R. W. Miles, G. Zoppi, I. Forbes, “Inorganic photovoltaic cells”, Materialstoday, 10, (2007), 20.
【9】 J. Meier, J. Spitaznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty, A. Shah, “Potential of amorphous and microcrystalline silicon solar cells”, Thin Solid Films, 451-452, (2004), 518.
【10】 A. Luaue and S. Hegedus, “Hand book of photovoltaic Science and Engineering”, (2004).
【11】 X. Wu, J. C. Keane, R. G. Dhere, C DeHart, A. Duda, T. A. Gessert, S. Asher, D. H. Levi, P. Sheldon, “16.5% efficient CdS/CdTe polycrystalline thin film solar cell”, Conference Proc. 17th Euro. Conf. Photovoltaic Solar Energy Conference, Munich. October 22, (2001), 955.
【12】 H. Hahn et al.,” Untersuchungen über ternäre Chalkogenide. V. Über einige ternäre Chalkogenide mit Chalkopyritstruktur”, Z. Anorg. Allg. Chem., 271, (1953), 153.
【13】 J. Shay, J. Wernick, “Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Application”, Pergamon Press, Oxford, (1974).
【14】 B. Tell, J. Shay, H. Kasper,” Optical and Electrical Properties of AgGaS2 and AgGaSe2”, Phys. Rev. B, 4, (1971), 4455.
【15】 B. Tell, J. Shay, H. Kasper,”Room-Temperature Electrical Properties of Ten I-III-VI2 Semiconductors”, J. Appl. Phys., 43, (1972), 2469.
【16】 W. Chen et al., Proc. 19th IEEE Photovoltaic Specialist Conf., (1987), 1445.
【17】 R. Potter,” Enhanced photocurrent ZnO/CdS/CuInSe2 solar cells”, Sol. Cells, 16, (1986), 521.
【18】 J. Hedstrom et al.,” ZnO/CdS/Cu(In,Ga)Se2 thin film solar cells with improved performance”, Proc. 23rd IEEE Photovoltaic Specialist Conf., (1993), 364.
【19】 A. M. Gabor et al.,” Band-gap engineering in Cu(In,Ga)Se2 thin films grown from (In,Ga)2Se3 precursors”, Sol. Energy Mater. Sol. Cells, 41-42, (1996), 247.
【20】 D. Tarrant, J. Ermer,” I-III-VI2 multinary solar cells based on CuInSe2”, Proc. 23rd IEEE Photovoltaic Specialist Conf., (1993), 372.
【21】 Ingrid Repins1, Miguel A. Contreras, Brian Egaas, Clay DeHart, John Scharf, Craig L. Perkins, Bobby To, Rommel Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 Solar Cell with81.2% Fill Factor”, Prog. Photovolt: Res. Appl., (2008).
【22】 William N. Shafarman, Lars Stolt , “Cu(InGa)Se2 Solar Cells”, John Wiley & Sons, (2003).
【23】 Godecke T, Haalboom T, Ernst F, “Phase equilibria of Cu-In-Se I.Stable states and nonequilibrium states of the In2Se3-Cu2Se subsystem”, Z. Metallkd , 91, (2000), 622–634.
【24】 Ye J, Yoshida T, Nakamura Y, Nittono O, “Realization of giant optical rotatory power for red and infrared light using III2VI3 compound semiconductor (GaxIn1-x)2Se3”, Jpn. J. Appl. Phys, 35, (1996), 395–400.
【25】 Zhang S, Wei S, Zunger A, “Stabilization of ternary compounds via ordered arrays of defect Pairs”, Phys. Rev. Lett., 78, (1997), 4059–4062.
【26】 M. Kaelin, D. Rudmann, A.N. Tiwari, “Low cost processing of CIGS thin film solar cells”, Solar Energy, 77, (2004), 749–756.
【27】 D. Mattox, “Handbook of Physical Vapor Deposition (PVD) Processing”, Noyes Publ., Park Ridge, NJ, (1998).
【28】 S. Jackson, B. Baron, R. Rocheleau, T. Russell, “A chemical reaction model for physical vapor deposition of compound semiconductor films“, Am. Inst. Chem. Eng. J., 33, (1987), 711.
【29】 S. Grindle, C. Smith, S. Mittleman, “ Preparation and properties of CuInS2 thin films produced by exposing sputtered Cu-In films to an H2S atmosphere”, Appl. Phys. Lett., 35, (1979) , 24.
【30】 T. Chu, S. Chu, S. Lin, J Yue, “Large Grain Copper Indium Diselenide Films”, J. Electrochem., 131, (1984) , 2182-2185.
【31】 Tanaka et al., Proc. 17th Euro. Conf. Photovoltaic Solar Energy Conversion, (2001), 989.
【32】 V. K. Kapur, B. M. Basol, E. S. Tseng, “Low cost methods for the production of semiconductor films for CuInSe2/CdS solar cells”, Solar Cells, 21, (1987) , 65.
【33】 H. Sato et al., “Fabrication of high efficiency CuIn(Ga)Se2 thin film solar cell by of high efficiency selenization with H2Se”, Proc. 23rd IEEE Photovoltaic Specialist Conf., (1993), 521.
【34】 J. Kessler, H. Dittrich, F. Grunwald, H. Schock, Proc. 10th Euro. Conf. Photovoltaic Solar Energy Conversion, (1991) , 879.
【35】 H. Oumous et al., Proc. 9th Euro. Conf. Photovoltaic Solar Energy Conversion, (1992) , 153.
【36】 F. Karg et al., “Novel rapid-thermal-processing for CIS thin-film solar cells”, Proc. 23rd IEEE Photovoltaic Specialist Conf., (1993), 441.
【37】 G. D. Mooney et al., “Formation of CuInSe2 thin films by rapid thermal recrystallization”, Appl. Phys. Lett., 58, (1991) , 2678.
【38】 S. Verma, N. Orbey, R. Birkmire, T. Russell,“Chemical reaction analysis of copper indium selenization“, Prog. Photovolt., 4, (1996), 341.
【39】 N. Orbey, G. Norsworthy, R. Birkmire, T. Russell, “Reaction analysis of the formation of CuInSe2 films in a physical vapor deposition reactor”, Prog. Photovolt., 6, (1998) , 79–86.
【40】 C. Jensen, D. Tarrant, J. Ermer, G. Pollock, “The role of gallium in CuInSe2 solar cells fabricated by a two-stage method”, Proc. 23rd IEEE Photovoltaic Specialist Conf., (1993) , 577.
【41】 M. Marudachalam et al., “Preparation of homogeneous Cu(InGa)Se2 films by selenization of metal precursors in H2Se atmosphere ”, Appl. Phys. Lett., 67, 3978–3980, (1995)
【42】 R. N. Bhattacharya, “Solution growth and electrodeposited CuInSe2 thin film”, J. Electrochem. Soc., 130, (1983), 2040.
【43】 V. K. Kapur, B. M. Basol, E. S. Tseng, “Low cost methods for the production of semiconductor films for CuInSe2/CdS solar cells”, Solar Cells, 21, (1987) , 65.
【44】 R.N. Bhattacharyaa, J.F. Hiltnerb, W. Batchelora, M.A. Contrerasa, R.N. Noufi, J.R. Sitesb, “15.4% CuIn1-xGaxSe2-based photovoltaic cells from solution-based precursor films ”, Thin Solid Films, 361, (2000), 396–399.
【45】 D. Lincot et al., “Chalcopyrite thin film solar cells by electrodeposition”, Solar Energy, 77, (2004), 725.
【46】 B. M. Başol, M. Pinarbasi, S. Aksu, J. Wang, Y. Matus, T. Johnson, Y. Han, M. Narasimhan, B. Metin, “ Electroplating based CIGS technology for toll-to-roll manufacturing ”, SoloPower Inc., 5981 Optical Court, San Jose, CA 95138.
【47】 Pugh R. J., Lennart Bergstrom, “Surface and Colloid Chemistry inAdvanced Ceramics Processing ”, Marcel Dekker (1994).
【48】 V. K. Kapur, A. Bansal, P. Le, O. I. Asensio, “Non-vacuum processing of CuIn1−xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks”, Thin Solid Films, 431–432, (2003) , 53.
【49】 T. Arita, N. Suyama, Y. Kita, et al. “CuInSe2 films prepared by screen printing and sintering method”, Proc. 20th IEEE Photovoltaic Specialists Conf., IEEE, NY, 1650, (1988).
【50】 G. Norsworthy, C. R. Leidholm, A. Halani, V. K. Kapur, R. Roe, B. M. Basol, R. Matson, “CIS film growth by metallic ink coating and selenization”, Sol. Energy Mater. Sol. Cells, 60, (2000) 127.
【51】 B. M. Basol, “Low cost techniques for the preparation of Cu(In,Ga)(Se,S)2 absorber layers”, Thin Solid Films, 361-362, (2000), 514.
【52】 M. Kaelina, D. Rudmanna, F. Kurdesaua, H. Zogga, T. Meyerb, A.N. Tiwari, “Low-cost CIGS solar cells by paste coating and selenization“, Thin Solid Films, 480–481, (2005), 486–490.
【53】 Chris Eberspacher, Chris Fredric, Karen Pauls, Jack Serra, “Thin-film CIS alloy PV materials fabricated using non-vacuum,particles-based techniques“, Thin Solid Films, 387, (2001). 18-22.
【54】 T. Wada, Y. Matsuo, S. Nomura1, Y. Nakamura, A. Miyamura, Y. Chiba, A. Yamada, M. Konagai, “ Fabrication of Cu(In,Ga)Se2 thin films by a combination of mechanochemical and screen-printing/sintering processes “, Phys. stat. sol., 11, (2006), 2593– 2597.
【55】 J. K. J. van Duren, C. Leidholm, A. Pudov, M. R. Robinson, Y. Roussillon, “ High-performance thin-film photovoltaics using low-cost process technology “, Nanosolar, 5521 Hellyer Avenue, San Jose, Ca. 95138, USA
【56】 F. F. Reuss, Mem.Soc.Imperiale Naturalistes de Moscow, 2, (1809), 327.
【57】 Laxmidhar Besra , Meilin Liu, “A review on fundamentals and applications of electrophoretic deposition (EPD) “, Progress in Materials Science, 52, (2007), 1–61.
【58】 Omer O. Van der Biest and Luc J. Vandeperre, “Electrophoretic deposition of materials“, Annual Review of Materials Science, 29, (1999), 327-352
【59】 I. Zhitomirsky, A. Petric, “Electrophoretic deposition of electrolyte materials for solid oxide fuel cells “, Journal of materials science, 39, (2004), 825– 831
【60】 Zhigang Xu, Gukan Rajaram, Jag Sankar, Devdas Pai, “Electrophoretic deposition of YSZ electrolyte coatings for solid oxide fuel cells “, Surface & Coatings Technology,201, (2006), 4484–4488
【61】 E. W. Williams et al., “The electrophoresis of thin film CdS/Cu2S solar cells”, Solar Cells, 1, (1979/80), 357.
【62】 L. Grinis, S. Dor, A. Ofir, A. Zaban, “Electrophoretic deposition and compression of titania nanoparticle films for dye-sensitized solar cells”, J. Photochem. Photobio. A: Chem., 198, (2008), 52.
【63】 G. S. Kim, H. K. Seo, V. P. Godble, Y. S. Kim, O. B. Yang, and H. S. Shin, “Electrophoretic deposition of titanate nanotubes form commercial titania nanoparticles: Application to dye-sensitized solar cells”, Electrochem. Commun., 8, (2006), 961.
【64】 C. X. Qiu, and I. Shih, “Investigation of electrodeposited CuInSe2 films”, Can. J. Phys., 65, (1987), 1011.
【65】 I. Shih, S. K. Zhang, and C. X. Qiu, “Preparation of CuInSe2 films by an electrophoretic deposition technique”, Solar Cells, 16, (1986), 283.
【66】 P. C. Pande, S. Bocking , R. W. Miles, M. J. Carter, and R. Hill, “Laser induced recrystallisation of electrophoretically deposited CdTe and CuInSe2 films”, Solid State Phenomena, 55, (1997), 146.
【67】 N. Yamamoto, S. Ishida, and H. Horinaka, “Solid state growth of CuInSe2 and CuInTe2”, Japan. J. Appl. Phys., 28, (1989), 1780.
【68】 T. Wada, and H. Kinoshita, “Rapid exothermic synthesis of chalcopyrite-type CuInSe2”, J. Phys. Chem. Solids, 66, (2005), 1987.
【69】 T. Wada, and H. Kinoshita, “Preparation of CuIn(S,Se)2 by mechanochemical process”, Thin Solid Films, 480-481, (2005), 92.
【70】 W. Hirpo, S. Dhingra, A. C. Sutorik, M. G. Kanatzidis, “ Synthesis of mixed copper-indium chalcogenolates. Single-source precursors for the photovoltaic materials CuInQ2 (Q = S, Se)”, J. Am. Chem. Soc., 115, (1993), 1597.
【71】 K. K. Banger, J. A. Hollingsworth, J. D. Harris, J. Cowen, W. E. Buhro, and A. F. Hepp, “Ternary single-source precursors for polycrystalline thin-film solar cells”, Appl. Organometal. Chem., 16, (2002), 617.
【72】 S. L. Castro, S. G. Bailey, R. P. Raffaelle, K. K. Banger, and A. F. Hepp, “Nanocrystalline chalcopyrite materials (CuInS2 and CuInSe2) via low temperature pyrolysis of molecular single-source precursors”, Chem. Mater., 15, (2003), 3142.
【73】 Y. Jin, C. An, K. Tang, L. Huang, G. Shen, “Hydrothermal synthesis and characterization of CuIn2.0Se3.5 nanocrystallites”, Materials Letters, 57, (2003), 4267.
【74】 B. Li, Y. Xie, J. Huang, Y. Qian, ”Synthesis by a solvothermal route and characterization of CuInSe2 nanowhiskers and nanoparticles”, Adv. Mater., 17, (1999), 1456.
【75】 Y. H. Yang, and Y. T. Chen, “Solvothermal Preparation and Spectroscopic Characterization of Copper Indium Diselenide Nanorods”, J. Phys. Chem. B, 110, (2006), 17370.
【76】 L. Zhang, J. Liang, S. Peng, Y. Shi, J. Chen, “Solvothermal synthesis and optical characterization of chalcopyrite CuInSe2 microspheres”, Mater. Chem. Phys., 106, (2007), 296.
【77】 W. L. Lu, Y. S. Fu, B. H. Tseng, “Preparation and characterization of CuInSe2 nano-particles”, J. Phys. Chem. Solids, 69, (2008), 637.
【78】 Y.-G. Chuna, K.-H. Kim, K.H. Yoon, “Synthesis of CuInGaSe2 nanoparticles by solvothermal route“, Thin Solid Films, 480–481, (2005), 46–49.
【79】 Jiang Tang, Sean Hinds, Shana O. Kelley, Edward H. Sargent “Synthesis of Colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 Nanoparticles“, Chem. Mater. XXXX, xxx, 000–000.
【80】 D. Michael, P. Mingos, and D. R. Baghurst, “Applications of microwave dielectric heating effects to synthetic problems in chemistry”, Chem. Soc. Rev., 20, (1991), 1.
【81】 C. Gabriel, S. Gabriel, E. H. Grant, B. S. J. Halstead, and D. Michael, P. Mingos, “Dielectric parameters relevant to microwave dielectric heating”, Chem. Soc. Rev., 27, (1998), 213.
【82】 C. J. Carmalt, D. E. Morrison, I. P. Parkin, “Solid-state and
solution phase metathetical synthesis of copper indium chalcogenides”, J. Mater. Chem., 8, (1998), 2209.
【83】 S. Ahn, K. Kim, Y. G. Chun, K. H. Yoon,” Nucleation and growth of Cu(In,Ga)Se2 nanoparticles in low temperature colloidal process”, Thin Solid Films ,515, (2007) ,4036.
【84】 C. C. Landry, and A. R. Barron, “Synthesis of polycrystalline chalcopyrite semiconductors by microwave irradiation”, Science 260,(1993),1653.
【85】 H. Grisaru, O. Palchik, and A. Gedanken, “Microwave-assisted polyol synthesis of CuInTe2 and CuInSe2 nanoparticles”, Inorg. Chem., 42, (2003), 7148.
【86】 C. Calderona, G. Gordillo, P. Bartolo-Perez, and F. Mesa, “Effect of the deposition conditions on the optical, morphological and compositional properties of CuIn1-xGaxSe2 thin films prepared by a multistage process”, REVISTA MEXICANA DE F´ISICA S, 53 (7), (2007), 270–273
【87】 J. Llanos, A. Buljan, C. Mujica, and R. Ramirez, “Electron transfer and electronic structure of KCuFeS2”, J. Alloys Compd., 234, (1996), 40.
【88】 L. D. Partain, R. A. Schneider, L. F. Donaghey, and P. S. McLeod, “Surface chemistry of CuxS and CuxS-CdS determined from x-ray photoelectron spectroscopy”, J. Appl. Phys., 57, (1985), 5056.
【89】 C. Caldero n, P. Bartolo-Perez, O. Rodrıguez, G. Gordilloa , “Phase identification and XPS studies of Cu(In,Ga)Se2 thin films”, Microelectronics Journal.
【90】 K. Otte, G. Lippold, D. Hirsch, A. Schindler, and F. Bigl, ”XPS and raman investigations of nitrogen ion etching for depth profiling of CuInSe2 and CuGaSe2”, Thin Solid Films, 361-362, (2000), 498.
【91】 吳致中, 以微波促進水/溶熱法合成硒化銅銦前驅物及其薄膜之電泳沉積, 國立台灣科技大學/化學工程研究所碩士論文, (2007)
【92】 F. Chen, M. Liu, “Preparation of yttria-stabilized zirconia (YSZ) films on La0.85Sr0.15MnO3 (LSM) and LSM-YSZ substrates using an electrophoretic deposition (EPD) process”, J. Eur. Ceram. Soc., 21, (2001), 127.
【93】 D. Papadimitriou et al, “Structural properties of chalcopyrite thin films studied by Raman spectroscopyphys”, phys stat. sol., (b) 242, (2005),13.
【94】 S. Schorr, G. Geandier, “In-situ investigation of the temperature dependent structural phase transition in CuInSe2 by synchrotron radiation”, Cryst. Res. Technol., 41, (2006), 450 – 457.
【95】 J. Olejnicek, C. A. Kamler, A. Mirasano, A. L. Martinez-Skinner, M. A. Ingersoll, C. L. Exstroma, S. A. Darveau , J. L. Huguenin-Love, M. Diaz , N.J.Ianno, R. J. Soukup, “A non-vacuum process for preparing nanocrystalline CuIn1-xGaxSe2 materials involving an open-air solvothermal reaction”, Solar Energy Materials & Solar Cells, (2009).
【96】 SeJin Ahn, KiHyun Kim, YoungGab Chun, KyungHoon Yoon, “Nucleating and growth of Cu(In, Ga)Se2 nanoparticles in low temperature colloidal process”, Thin Solid Films, 515, (2007), 4036-4040.
【97】 A. A. I. Al-Bassam, “X-ray analysis and band gap measurement of CuIn1-xGaxSe2 films”, Materials Science Communication, 62, (2000), 175-178.
【98】 T. Maeda, T. Takeichi, T. Wada, “Systematic studies on electronic structures of CuInSe2 and the other chalcopyrite related compounds by first principle calculations”, phys. stat. sol., 203, (2006), 2634-2638.

QR CODE