研究生: |
賈博淵 BO-YUAN JIA |
---|---|
論文名稱: |
PMMA, TPU及聚(芴-四苯乙烯)混摻之光學及力學性質與鑑定 Characterization, optical and mechanical properties of blending systems of PMMA, TPU and poly(fluorene-tetraphenylethene) |
指導教授: |
游進陽
Chin-Yang Yu |
口試委員: |
王丞浩
Chen-Hao Wang 施劭儒 Shao-Ju Shih |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 材料科學與工程系 Department of Materials Science and Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 聚(芴-四苯乙烯) 、聚甲基丙烯酸甲酯 、聚氨酯樹脂 、鈴木耦合 、聚集誘導發光 |
外文關鍵詞: | poly(fluorene-tetraphenylethene), Suzuki coupling, PMMA, TPU, aggregation-induced emission |
相關次數: | 點閱:659 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用鈴木耦合聚合反應使用鈀金屬催化合成新聚(芴-四苯乙烯)聚合物。此聚合物具有良好的溶解度和熱穩定性,具有潛在許多的應用。四苯乙烯為具有聚集誘導發光之特性。新聚(芴-四苯乙烯)耦合芴及四苯乙烯單元並研究其各項性質。
本實驗選用鈀金屬催化之鈴木耦合反應作為高分子聚合反應,並與PMMA及TPU混摻。分別以高效能高分子核心系統 (APC)、液態超導核磁共振儀 (NMR)、紫外光-可見光/近紅外光分析儀 (UV)、螢光光譜儀 (PL)、熱重量損失分析儀 (TGA)、熱示差分析儀 (DSC)、電腦伺服拉力試驗機來鑑定判斷聚(芴-四苯乙烯)聚合物混摻PMMA及TPU的各項性質鑑定。
In this thesis, the synthesis of fluorene-tetraphenylethene polymers using palladium catalyst by Suzuki coupling polymerization has been reported. The resulting polymers showed good solubility and thermal stability and have many potential applications. Tetraphenylethene has the characteristics of aggregation-induced emission (AIE). In this experiment, the polymers were mixed with PMMA and TPU. Advanced polymer chromatography (APC), liquid phase nuclear magnetic resonance(NMR), ultraviolet-visible /near-infrared spectroscopy (UV-vis-NIR), fluorescence spectrometer (PL), thermogravimetric analyzer (TGA), differential scanning calorimetry (DSC) were used to measure the properties of the polymers. The computer assistant tensile testing machine has been used to identify and characterize the mechanical properties of PMMA and TPU mixed with poly (fluorene-tetraphenylethene).
[1] A. Kraft, A. C. Grimsdale, A. B. Holmes, Angew. Chem. Int. Ed., 1998, 37,
402.
[2] C. K. Chiang, C. B. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa,
E. J. Louis, S. C. Gau, A. G. MacDiarmid, Phys. Rev. Lett., 1977, 39, 1098.
[3] C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett., 1987, 51, 913.
[4] H. N. Kim, Z. Guo, W. Zhu, J. Yoon, H. Tian, Chem. Soc. Rev., 2011, 40, 79.
[5] A. F. Li, Y. B. Ruan, Q. Q. Jiang, W. B. He, Y. B. Jiang, Chem. Eur. J.,
2010, 16, 5794.
[6] A. O. Patil, A. J. Heeger, F. Wudl, Chem. Rev., 1988, 88, 183.
[7] C. J. Shi, Y. Yao, Y. Yang, Q. B. Pei, J. Am. Chem. Soc., 2006, 128, 8980.
[8] H. Suh, Y. Jin, S. H. Park., D. Kim., J. Kim, C. Kim, J. Y. Kim, K. Lee,
Macromolecules, 2005, 38, 6285.
[9] A. Zen, M. Saphiannikova, D. Neher, U. Asawapirom, U. Scherf, Chem.
Mater., 2005, 17, 781.
[10] G. Hadziioannou, P. F. V. Hutten, Semiconducting Polymer -Chemistry,Physics
and Engineering, 1999, Wiley-VCH: Weinheim.
[11] G. Horowitz, Adv. Mater., 1998, 10, 365.
[12] C. L. Pai, C. L. Liu, W. C. Chen, S. A. Jenekhe, Polymer, 2006, 47, 699.
[13] A. J. Heeger, Rev. Mod. Phys., 2007, 73, 681.
[14] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger,
Chem. Commun., 1977, 578.
[15] T. Schimmel, M. Schwoerer, H. Naarmann, Synth. Met., 1990, 37, 1.
[16] H. Shirakawa, Angew. Chem. Int. Ed., 2001, 40, 2574.
[17] H. Nishikiori, N. Tanaka, K. Takagi ,T. Fujii, Res. Chem. Intermed., 2003,
29, 485.
[18] M. Pope, H. Kallmann, P. Magnante, J. Chem. Phys., 1963, 38, 2042.
[19] L. C. Clark, C. L.yons, N. Y. Ann, Acad. Sci., 1962, 102, 29.
[20] L. J. Fan, Y. Zhang, C. B. Murphy, S. E. Angell, Coord. Chem. Rev., 2009,
253, 413.
[21] B. Valeur, I. Leray, Coord. Chem. Rev., 2000, 205, 3.
[22] J. Bourson, B. Valeur, J. Phys. Chem., 1989, 93, 3871.
[23] M. J. Marsella, R. J. Newland, P. J. Carroll, T. M. Swager, J. Am. Chem.
Soc., 1995,117, 9842.
[24] H. B. Laurent, A. Castellan, M. Daney et al., J. Am. Chem. Soc., 1986, 108,
315.
[25] I. Aoki, H. Kawabata, K. Nakashima, S. Shinkai, J. Chem. Soc. Chem.
Commun., 1991, 1771.
[26] M. E. A. Fegley, E.T.Angell, Inorg. Chim. Acta., 2012, 381, 78.
[27] L. J. Fan, E.T.Angell, Coord. Chem. Rev., 2009, 253, 410.
[28] T. M. Swager, Acc. Chem. Res., 1998, 31, 201.
[29] B. Wang, M. R. Wasielewski, J. Am. Chem. Soc., 1997, 119, 12.
[30] D. McQuade, A. Pullen, T. Swager, Chem. Rev., 2000, 100, 2537.
[31] F. G. Bordwell, G. J. McCollum, J. Org. Chem., 1976, 41, 2391.
[32] M. Fukuda, K. Sawaka, K. Yoshino, Jpn. J. Appl. Phys., 1989, 28, 1433.
[33] C. E. Brown, P. Kovacic, C. A. Wilkie , J. A. Kinsinger, R. E. Hein, S. I.
Yaniger, R. B. Jr. Cody, J.Polym. Sci.,1986, 24, 255.
[34] T. Yamamoto, Prog. Polym. Sci., 1992, 17, 1153.
[35] Ranger M., M. Leclerc, J. Chem. Soc. Chem. Commun., 1997, 1597.
[36] H. Sirringhaus, N. Tessler, D. S. Thomas, P. J. Brown, R. H. Friend, Adv.
Solid State Phys., 1999, 39, 101.
[37] C. D. Dimitrakopoulos, P. R. L. Malenfant, Adv. Mater., 2002, 14, 99.
[38] N. S. Baek, S. K. Hau, H. L. Yip, O. Acton, K. S. Chen, A. K. Y. Jen, Chem.
Mater., 2008, 20, 5734.
[39] A. J. Mozer, N. S. Sariciftci, C. R. Chimie., 2006, 9, 568.
[40] C. J. Brabec, S. N. Sariciftci, Monatsh. Chem., 2001, 132, 421.
[41] M. C. Kevin, D. M. Michael, Chem. Mater., 2004, 16, 4533.
[42] D. H. Charych, J. O. Nagy, W. Spevak, M. D. Bednarski, Science, 1993, 261,
585.
[43] T. Klingstedt, K. P. R. Nilsson, Biochim. Biophys. Acta., 2011, 1810, 286.
[44] D. T. McQuade, A. E. Pullen, T. M. Swage, Chem. Rev., 2000, 100, 2537.
[45] A. Kraft, A. C. Grimsdale, A. B. Holmes, Angew. Chem. Int. Ed., 1998, 37,
402.
[46] M. T. Bernius, M. Inbasekaran, J. O'Brien, W. Wu, Adv. Mater., 2000, 12,
1737.
[47] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R.
H. Friend, P. L. Burns, A. B. Holmes, Nature, 1990, 347, 539.
[48] C. K. Chiang, C. B. Fincher, Jr., Y. W. Park, A. J. Heeger, Phys. Rev.
Lett., 1977,39, 1098.
[49] A. W. Grice, D. D. C. Bradley, M. T. Bernius, M. Inbasekaran, W. W. Wu, E.
P. Woo, Appl. Phys. Lett., 1998, 73, 629.
[50] D. Sainova, T. Miteva, H. G. Nothofer, U. Scherf, I. Glowacki, J. Ulanski,
H. Fujikawa, D. Neher, Appl. Phys. Lett., 2000, 76, 1810.
[51] R. D. McCullough, Adv. Mater., 1998, 10, 93.
[52] A. Watanabe, S. Murakami, K. Mori, Y. Kashiwaba, Macromolecules, 1989,
22. , 4231.
[53] A. G. MacDiarmid, A. J. Epstein, Synth. Met., 1994, 65, 103.
[54] J. V. Grazuleviciusa, P. Strohrieglb, J. Pielichowskic, K. Pielichowski, Prog.
Polym. Sci., 2003, 28, 1297.
[55] J. Li, C. Ma, J. Tang, C. S. Lee, S. Lee, Chem. Mater., 2005, 17, 615.
[56] J.-F. Morin, M. Leclerc, D. Adès, A. Siove, Macromol. Rapid Commun., 2005,
26, 761.
[57] S. T. Wellinghoff, Z. Deng, J. F. Reed, J. Racchini, Polym. Prepr., 1984,
25, 238.
[58] A. Siove, D. Adès, C. Chevrot and G. Froyer, Makromol. Chem., 1989, 190,
1361.
[59] A. Siove, D. Adès, E. Ngbilo and C. Chevrot, Synth. Met., 1990, 38, 331.
[60] A. Siove, A. Aboulkassim, K. Faïd, D. Adès, Polym. Int., 1995, 37, 171.
[61] Z. B. Zhang, M. Fujiki, H.-Z. Tang, M. Motonaga, K.
Torimistu,Macromolecules, 2002, 35, 1988.
[62] J.-F. Morin, M. Leclerc, Macromolecules, 2001, 34, 4680.
[63] M. Sonntag, P. Strohriegl, Chem. Mater., 2004, 16, 4736.
[64] P.-L. T. Boudreault, S. Beaupréa, M. Leclerc, Polym. Chem., 2010, 1, 127.
[65] H. Wen, Z. Ge, Y. Liu, T. Yokozawa, L. Lu, X. Ouyang, Z. Tan, Eur. Polym
J., 2013, 49, 3740.
[66] L. Vacareanu, A.-M. Catargiu, M. Grigoras, High Perform. Polym., 2015, 27,
485.
[67] F. Dumur, Org. Electron., 2015, 25, 361.
[68] N. Leclerc, A. Michaud, K. Sirois, J.-F. Morin, M. Leclerc, Adv. Funct.
Mater., 2006, 16, 1695.
[69] F. Lombeck, H. Komber, A. Sepe, R. H. Friend, M. Sommer, Macromolecules,
2015, 48, 7853.
[70] S. G. Hahm, T. J. Lee, D. M. Kim, W. Kwon, Y.-G. Ko, T. Michinobu, M. Ree,
J. Phys. Chem. C., 2011, 115, 21955.
[71] W. Li, M. Otsuka, T. Kato, Y. Wang, T. Mori, T. Michinobu, Beilstein J.
Org. Chem., 2016, 12, 1400.
[72] T. Förster, K. Kasper, Z. Physik, Chem., 1955, 59, 976.
[73] J. B. Birks, Photophysics of Aromatic Molecules, Wiley, London., 1970.
[74] Y . Hong, J. W. Y. Lam, B. Z. Tang, Chem. Soc. Rev., 2011, 40, 5361.
[75] J. Wang, Y . Zhao, C. Dou, H. Sun, P. Xu, K. Ye, J. Zhang, S. Jiang, F. Li,
Y . Wang, J. Phys. Chem. B., 2007, 111, 5082.
[76] B. T. Nguyen, J. E. Gautrot, C. Ji, P. L. Brunner, M. T. Nguyen, X. X. Zhu,
Langmuir, 2006, 22, 4799.
[77] L. Chen, S. Xu, D. McBranch, D. Whitten, J. Am. Chem. Soc., 2000, 122,
9303.
[78] P. N. Taylor, M. J. O'Connell, L. A. McNeill, M. J. Hall, R. T. Aplin, H.
L. Anderson, Angew. Chem. Int. Ed., 2000, 39, 3457.
[79] J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X.
Zhan, Y. Liu, D. Zhu, B. Z. Tang, Chem. Commun., 2001, 17, 1740.
[80] H. Wang, E. Zhao, J. W.Y. Lam, B. Z. Tang, Mater. Today, 2015, 18, 377.
[81] J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Chem.
Rev., 2015, 115, 11718.
[82] Z. Zhao, J. W. Y. Lam, B. Z. Tang, J. Mater. Chem., 2012, 22, 23726.
[83] W. Z. Yuan, P. Lu, S. Chen, J. W. Y. Lam, Z. Wang, Y . Liu, H. S. Kwok, Y.
Ma, B. Z. Tang, Adv. Mater., 2010, 22, 2159.
[84] Z. Zhao, S. Chen, J. W. Y. Lam, P. Lu, Y . Zhong, K. S. Wong, H. S. Kwoka,
B. Z. Tang, Chem. Commun., 2010, 46, 2221
[85] W. L. Gong, B. Wang, M. P. Aldred, C. Li, G. F. Zhang, T. Chen, L. Wang, M.
Q. Zhu, J. Mater. Chem. C., 2014, 2, 7001.
[86] J. Huang, X. Yang, J. Wang, C. Zhong, L. Wang, J. Qina, Z. Li, J. Mater.
Chem., 2012, 22, 232.
[87] R. Hu, J. L. Maldonado, M. Rodriguez, C. Deng, C. K. W. Jim, J. W. Y.
Lam, M. M. F. Yuen, G. Ramos-Ortiz, B. Z. Tang, J. Mater. Chem., 2012, 22,
2478.
[88] J. Shi, Y . Wu, S. Sun, B. Tong, J. Zhi, Y . Dong, J. Polym. Sci. Part A:
Polym. Chem., 2013, 51, 230.
[89] B. Yao, J. Mei, J. Li, J. Wang, H. Wu, J. Z. Sun, A. Qin, B. Z. Tang,
Macromolecules, 2014, 47, 1326.
[90] W. Dong, T. Fei, A. Palma-Cando, U. Scherf, Polym. Chem. 2014, 5, 4048.
[91] B. He, S. Ye, Y . Guo, B. Chen, X. Xu, H. Qiu, Z. Zhao, Sci. China. Chem.,
2013, 56, 1221.
[92] J. Li, X. Han, Q. Bai, T. Shan, P. Lu, Y . Ma, J. Polym. Sci. Part A:
Polym. Chem., 2017, 55, 708.