簡易檢索 / 詳目顯示

研究生: 陳加倫
Chia-Lun Chen
論文名稱: 應用於NG-PON2之多波長選擇開關之研究
Experimental Study of Multi-Wavelength Selective Switch for NG-PON2
指導教授: 周錫熙
Hsi-Hsir Chou
口試委員: 葉秉慧
Ping-hui Yeh
蕭毅
Yi Shiau
鄭玉鉅
Yu-Chu Cheng
周錫熙
Hsi-Hsir Chou
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 299
中文關鍵詞: 波長選擇開關下一代無源光網路系統
外文關鍵詞: Wavelength Selective Switch, NG-PON2
相關次數: 點閱:150下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要是利用矽基液晶元件(Liquid Crystal on Silicon, LCoS)為空間光調變器(Spatial Light Modulator, SLM)來進行可應用於NG-PON2之多波長選擇開關的設計與研究。
本論文主要將針對1×36多波長選擇開關及4×16多波長選擇開關之技術進行設計與研究,續而透過使用ZEMAX光學軌跡追蹤模擬軟體進行系統模擬與效能之分析。其中在4×16多波長選擇開關的部分,本論文更進一步透過動態頻譜等化器之設計解決功率傳輸不一之問題,同時也針對極化相依損耗問題進行極化不敏感之設計。而在進行1×36以及4×16多波長選擇開關實現之前,本論文首先針對應用於LCoS上之G-S演算法進行研究,並透過優化之G-S演算法於近場、遠場之實驗來驗證此演算法於近場、遠場傳輸時之效能提升,並應用於1×36以及4×16多波長選擇開關之設計與實現。
從1×36多波長選擇開關之實驗分析系統損耗得知,在單點切換以及多重播送的部份,其總插入性損耗約介於-11dB至-16之間以及-12dB至-17dB之間,而單點切換之Crosstalk均小於-30dB。而在4×16多波長選擇開關之實驗分析系統損耗得知,其總插入性損耗約介於-21dB至-26dB之間,Crosstalk均小於-30dB。最後藉由上載2.5Gbps之NRZ-OOK訊號進行數據傳輸測試以驗證系統之傳輸特性,從眼圖量測之結果分析,在1×36以及4×16多波長選擇開關之實驗,其各接收光纖所接收到之各波長皆可視為無位元錯誤(error-free)。


In this thesis, a Liquid Crystal on Silicon (LCoS)-based device was used as a Spatial Light Modulator (SLM) to experimentally implement two wavelength selective switching systems (WSS), which were based on 1×36 and 4×16 switching architecture respectively for the application in NG-PON2.
The design of the optical system and performance simulations were conducted and evaluated through ZEMAX ray tracing simulation program. A dynamic spectrum equalizer through the design of LCoS-SLM was proposed to improve the power uniformity of transmitted wavelengths, and the system multicast transmission was achieved through an efficient design of computer-generated holograms based on GS algorithm.
According to the experimental measurements, the system light loss of the switching system based on two switching architecture were analyzed and the results shown that depending on different wavelength selection scenario with/without multicast transmissions, 1×36 switching architecture has a system light loss of -11dB ~ -17dB and the 4×16 switching architecture has a light loss of -21dB ~ -26dB. The crosstalk of the system either in a 1×36 switching architecture or in a 4×16 switching architecture were all measured to be less than -30dB.
Finally, digital transmission tests were performed at a data transmission rate of 2.5 Gbps. The performance evaluation of each wavelength received at the output fiber ports of each switching system estimated from the measured Q factor of eye diagrams were all regarded as error-free.

目錄 IV 圖目錄 VIII 表目錄 XVIII 第一章 導論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 3 第二章 無源光網路(PON)技術的發展 4 2.1 傳統PON之介紹 4 2.2 PON技術之崛起 5 2.2.1 PON之架構與技術介紹 5 2.2.2 PON之優勢 7 2.2.3 PON之發展與限制 7 2.3 NG-PON2之介紹 10 2.3.1 NG-PON2之架構與技術介紹 11 2.3.2 NG-PON2之技術選擇 12 2.3.3 NG-PON2(TWDM-PON)之技術發展 14 2.3.4 NG-PON2之發展趨勢 17 2.4 波長選擇開關於NG-PON2之應用 18 第三章 應用光調變器於波長選擇開關之設計 20 3.1 波長選擇開關之技術選擇 20 3.2 矽基液晶式LCoS之調變技術 25 3.3 繞射理論介紹 28 3.3.1 近場繞射理論 28 3.3.2 遠場繞射理論 30 3.3.3 繞射元件之效能評估 31 3.4 計算電腦全像圖(Hologram)之演算法概述 32 3.4.1 G-S演算法(Gerchberg-Saxton) 34 3.4.2 G-S演算法之優化設計[33] 36 3.5 優化G-S演算法於近場應用之實驗 39 3.5.1 實驗步驟與架構(近場) 39 3.5.2 各維度未經優化之GS測量結果(近場) 41 3.5.3 各維度已經優化之GS測量結果(近場) 45 3.5.4 15cm成像距離之測量分析 50 3.5.5 1.25m成像距離之測量分析 56 3.5.6 2.5m成像距離之測量分析 64 3.6 優化G-S演算法於遠場應用之實驗 70 3.6.1 實驗步驟與架構(遠場) 70 3.6.2 各維度未經優化之GS測量結果(遠場) 73 3.6.3 各維度經優化之GS測量結果(遠場) 77 第四章 1×36之多波長選擇開關 83 4.1 系統工作原理 83 4.2 系統架構與元件介紹 84 4.3 系統架構之設計 87 4.3.1 輸入光源之選擇 87 4.3.2 繞射光柵之選擇 87 4.3.3 透鏡系統之設計 88 4.3.4 LCoS元件之電腦全像圖設計 91 4.3.5 接收端之選擇 94 4.4 1×36之光學系統模擬(ZEMAX) 95 4.5 系統架構之實現 100 4.5.1 實驗架構介紹 100 4.5.2 實驗步驟 102 4.6 1×36架構之系統損耗分析 103 4.6.1 光學元件之損耗量測 103 4.6.2 演算法圖形之繞射效率分析 103 4.6.3 耦合效率分析 105 4.6.4 總插入性損耗分析 108 4.6.5 Crosstalk量測 110 4.7 數據傳輸測試 111 4.7.1 1×6單點切換之2.5Gbps訊號傳輸測試 112 4.7.2 1×36多重播送之2.5Gbps訊號傳輸測試 127 4.8 本章結論 137 第五章 4×16之多波長選擇開關 138 5.1 前言 138 5.1.1 極化敏感之系統架構 138 5.1.2 極化敏感之4×16全像圖設計 142 5.1.3 極化敏感之4×16 Zemax模擬 149 5.1.4 極化敏感之4×16繞射圖形量測分析 153 5.2 4×16極化敏感架構之系統損耗分析 164 5.2.1 光學元件之損耗量測 164 5.2.2 繞射效率分析 165 5.2.3 耦合效率分析 168 5.2.4 系統總損耗量測 174 5.2.5 Crosstalk量測 177 5.3 極化敏感之4×16訊號傳輸測試 183 5.3.1 實驗架構與步驟介紹 184 5.3.2 眼圖量測與分析 186 5.4 動態頻譜等化之設計 222 5.4.1 動態頻譜等化之介紹 222 5.4.2 應用於動態頻譜等化之全像圖設計 223 5.4.3 動態頻譜等化之實際量測結果 227 5.5 極化不敏感架構之設計 242 5.5.1 極化不敏感之系統架構 (一) 242 5.5.2 極化不敏感之系統架構(二) 245 5.5.3 極化不敏感之架構選擇 247 5.5.4 輸入光源之選擇 253 5.5.5 透鏡系統之設計 253 5.5.6 接收端之選擇 255 5.5.7 4×16極化不敏感之ZEMAX模擬 256 5.5.8 光束在LCoS上光斑大小之模擬 256 5.5.9 接收端之耦合效率模擬 258 第六章 結論 262 6.1 摘要與討論 262 6.2 未來改善 264 重要參考文獻 265

[1] DIGITIMES, “台灣業者應整合以因應全球光通訊產業發展,”
https://www.digitimes.com.tw/iot/article.asp?cat=130&cat1=45&cat2
=20&id=0000288531_dbk6ivlr2e59oz2i1wyxx, June. 20, 2012.
[2] R. Yadav, ”Passive-optical-network- (PON-) based converged access
network,“ J. Opt. Commun. Netw. 4, B124-B130 (2012).
[3] A Harris, A. Sierra, S. V. Kartalopoulos, and J. J. Sluss, “Security
enhancements in novel passive optical networks,“ in IEEE
International Conference on Communications (IEEE, 2007), pp. 1399-
1403.
[4] Hirotaka Nakamura, “NG-PON2 Technologies”, in NTT Access
Network Service Systems Laboratories, NTT Corporation, in 21 Mar.,
2013.
[5] ITU-T Telecommunication standardization sector of ITU, “Gigabit-
Capable Passive Optical Networks (GPON),” ITU-T G.984, Mar. 2008.
[6] IEEE Standard for Information technology– Local and metropolitan
area networks, “CSMA/CD Access Method and Physical Layer
Specifications Amendment: Media Access Control Parameters,
Physical Layers, and Management Parameters for Subscriber Access
Networks,” IEEE, 802.3ah-2004.
[7] ITU-T Telecommunication standardization sector of ITU, “10 Gigabit-
Capable Passive Optical Network (XG-PON),” ITU-T G.987, Jun.
2012.
[8] IEEE Standard for Information technology– Local and metropolitan
area networks, “Physical Layer Specifications and Management
Parameters for 10 Gb/s Passive Optical Networks,” IEEE, 802.3av-
2009, Oct. 2009.
[9] ITU-T Telecommunication standardization sector of ITU, “40-
Gigabit-Capable Passive Optical Networks (NG-PON2),” ITU-T
G.989, Oct. 2015.
[10] Derek Nesset, “NG-PON2 Technology and Standards”, in Journal Of
Lightwave Technology, Vol. 33, No. 5, March 1, 2015.
[11] D. van Veen, D. Suvakovic, H. Chow, V. Houtsma, E. Harstead,
P.Winzer, and P. Vetter, “Options for TDM PON beyond 10G,”
presented at the Access Netw. In-house Commun., Colorado Springs,
CO, USA, 2012, Paper AW2A.1.
[12] N. Cvijetic, “OFDM for next-generation optical access networks,”
IEEE J. Lightw. Technol., vol. 30, no. 4, pp. 384–398, Feb. 2012.
[13] S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, and K.-H.
Song, “Fiber-to-the-home services based on wavelength division
multiplexing passive optical network,” IEEE J. Lightw. Technol., vol.
22, no. 11, pp. 2582–2591, Nov. 2004.
[14] W. P¨ohlmann and T. Pfeiffer, “Demonstration of wavelength-set
division multiplexing demonstration of wavelength-set division
multiplexing for a cost effective PON with up to 80 Gbit/s upstream
bandwidth,” presented at the Eur. Conf. Exhib. Opt. Commun.,
Geneva, Switzerland, 2011, Paper We. 9. C. 1.
[15] Y. Luo, X. Zhou, F. Effenberger, X. Yan, G. Peng, Y. Qian, and Y.
Ma, “Time- and wavelength-division multiplexed passive optical
network (TWDM-PON) for next-generation PON stage 2 (NG-PON2),”
IEEE J. Lightw. Technol., vol. 31, no. 4, pp. 587–593, Feb. 2013.
[16] M. R. Dizaji et al., “Reconfigurable Time Slot Interchange Based on
Four-Wave Mixing and a Programmable Planar Lightwave Circuit,”
in IEEE Photonics Journal, vol. 6, no. 5, pp. 1-7, Oct. 2014.
[17] J. Müllerová, D. Korþek and M. Dado, “On wavelength Blocking for
XG-PON Coexistence with GPON and WDM-PON Networks,” 2012
14th International Conference on Transparent Optical Networks
(ICTON), Coventry, 2012, pp. 1-4.
[18] B.C.Collings, “Wavelength Selectable Switches and Future Photonic
Network Applications,” 2008 International Conference on Photonics
in Switching., 2008, 1~4.
[19] B. Fracasso, J. L. de Bougrenet de la Tocnaye, M. Razzak and C. Uche,
"Design and performance of a versatile holographic liquid-crystal
wavelength-selective optical switch," in Journal of Lightwave
Technology, vol. 21, no. 10, pp. 2405-2411, Oct. 2003.
[20] J. Kelly, “Application of Liquid Crystal Technology to
Telecommunication Devices,” paper NThE1, NFOEC, Anaheim,
California, 2007.
[21] Glenn Baxter, Steven Frisken, Dmitri Abakoumov, et al., “Highly
programmable Wavelength Selective Switch based on Liquid Crystal
on Silicon switching elements.” Proc OFC/NFOEC, 2006. 1~3.
[22] D. M. Marom, David. T. Neilson, Dennis. S. Greywall, et al.
“Wavelength-Selective 1×K Switches Using Free Space Optics and
MEMS Micromirrors: Theory, Design and Implementation.” J.
Lightwave Tech., 2005, 23(4): 1620~1630.
[23] Jonathan Dunayevsky and Dan M. Marom, “MEMS Spatial Light
Modulator for Phase and Amplitude Modulation of Spectrally
Dispersed Light,” Journal of Microelectromechanical Systems, VOL.
22, No. 5, October 2013.
[24] S. Kirkpatrick, C. D. Gelatt, Jr, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, 1983, pp. 671-680.
[25] U. Mahlab, J. Shamir, and H. J. Caulfield, “Genetic algorithm for
optical pattern recognition,” Opt. Lett., vol. 16, no. 9, 1991, pp.648-
650.
[26] Goodman, Joseph W, “Introduction to fourier optics.”, Englewood,
Colo., 3??ed, 2005.
[27] 蔡承佑, “應用於5G 之短距離微投影通訊架構之研究與實現”,
國立台灣科技大學碩士論文,2017,1 月。
[28] B. K. Jeennison, J. P. Allebach, and D. W. Sweeney, “Efficient design
of direct binary search computer generated holograms,” J. Opt. Soc.
Am. A, vol. 8, no. 4, 1991, pp. 652-660.
[29] S. Li, Z. Wang, J. Xu, S. Zhong, and Y. Wu, “Wavelength-Selective
Switch Based on a Polarization-Independent Transmission Grating and
a High Fill-Factor Micromirror Array,” In IEEE photonics Technol.,
vol. 23, no. 17, Sep. 1, 2011.
[30] N. Gisin, “The Statistics of Polarization Dependent Losses,” Group of
Applied Physics University of Geneva, 1211 Geneva 4, Switzerland.
[31] R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the
determination of the phase from image and diffraction plane
pictures,” Optik 35, 237 (1972).
[32] David Mendlovic, Zeev Zalevsky, Gal Shabtay, and Emanuel Marom,
"High-efficiency arbitrary array generator," Appl. Opt. 35, 6875-6880
(1996).
[33] H. H. Chou, C. Y. Tsai, C. L. Chen, “Experimental Study of
Reconfigurable Visible Light Communications Based on Holographic
Spot Array Generations,” in IEEE Photonics Journal, vol. 10, No. 2,
Apr. 2018.
[34] Thorlab Diffraction Gratings Tutorial,
http://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=8627,
November 2016.
[35] S. Ahderom, M. Raisi, K. Lo, K. E. Alameh, and R. Mavaddat,
“Applications of Liquid Crystal Spatial Light Modulators in Optical
Communications,” Opto-VLSI Group-Centre for Very High Speed
Microelectronic Systems, Edith Cowan University, 100 Joondalup
Drive, Joondalup, WA, 6027, Australia.
[36] 周錫熙, “應用於NG-PON2 之雙向非對稱式光多波長選擇開關之
研究與實現,” 科技部電信學門106 年度(計畫編號: MOST 106-
2221-E-011-011)。
[37] P. LoPresti, H. Refai and J. Sluss, “Adaptive power and divergence to
improve airborne networking and communications,” 24th Digital
Avionics Systems Conference, 2005, pp. 1. B. 1-1. 1-6 Vol. 1.
[38] 先鋒科技-光電光學光譜儀器雷射,
http://www.teo.com.tw/prodDetail_print.asp?id=252, 2013.
[39] Robot Vision Lab. “Projector Technologies,”
http://rvlab.icg.tugraz.at/project_page/project_microsense/project_mi
crosense_details.htm, 2016.
[40] L. Cui, Y. Tang, H. Jia, J. Luo and B. Gnade, “Analysis of the
Multichannel WDM-VLC Communication System,“ in Journal of
Lightwave Technology, vol. 34, no. 24, Dec.15, 15 2016.
[41] R. Ramaswami, and K. N. Sivarajan, “Optical Network,“ Morgan
Kaufmann, USA, pp. 258-263, 2002.
[42] AMRITA, “Laser beam divergence and spot size,”
http://vlab.amrita.edu/?sub=1&brch=189&sim=342&cnt=1, 2016.
[43] R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise
erbium-doped fiber amplifier at 1.54 um,” Electron. Lett., vol. 23, no.
19, pp. 1026–1028, 1987.
[44] M. Tachibana, R. I. Laming, P. R. Morkel, and D. N. Payne,
“Erbiumdoped fiber amplifier with flattened gain spectrum,” IEEE
Photon. Technol. Lett., vol. 3, pp. 118–120, Feb. 1991.
[45] K. Inoue, T. Kominato, and H. Toba, “Tunable gain equalization using
a Mach–Zehnder optical filter in multistage fiber amplifiers,” IEEE
Photon. Technol. Lett., vol. 3, pp. 718–720, 1991.
[46] R. Kashyap, R. Wyatt, and R. J. Campbell, “Wideband gain flattened
erbium fiber amplifier using a photosensitive fiber blazed grating,”
Electron. Lett., vol. 29, no. 2, pp. 154–156, 1993.
[47] S. H. Huang, X. Y. Zou, S.-M. Hwang, A. E. Willner, Z. Bao, and D.
A. Smith, “Experimental demonstration of dynamic network
equalization of three 2.5-Gb/s WDM channels over 1000 km using
acoustooptic tunable filters,” IEEE Photon. Technol. Lett., vol. 8, pp.
1243–1245, Sept. 1996.
[48] M. C. Parker, A. D. Cohen, and R. J. Mears, “Dynamic Holographic
Spectral Equalization for WDM,” IEEE Photon. Technol. Lett., vol. 9,
No. 4, Apr. 1997.
[49] John Kondis, Brad A. Scott, Al Ranalli, Robert Lindquist, “Liquid
crystals in bulk optics-based DWDM optical switches and spectral
equalizers," Lasers and Electro-Optics Society, 2001.
[50] N. Gisin, “The Statistics of Polarization Dependent Losses,” Group of
Applied Physics University of Geneva, 1211 Geneva 4, Switzerland.
[51] D. M. Marom et al., “Wavelength-selective 1 switches using free space
optics and MEMS micromirrors: Theory, design, implementation,” J.
Lightw. Technol., vol. 23, no. 4, pp. 1620–1630, Apr. 2005.
[52] S. Li, Z. Wang, J. Xu, S. Zhong, and Y. Wu, “Wavelength-Selective
Switch Based on a Polarization-Independent Transmission Grating and
a High Fill-Factor Micromirror Array,” In IEEE photonics Technol.,
vol. 23, no. 17, Sep. 1, 2011.
[53] IRIDIAN Spectral Technology, ”Tap Couplers-Beamsplitter Tutotial”
https://www.iridian.ca/technical-resources/optical-filter-tutorials/tapcoupler-
beamsplitter-tutorial/.

QR CODE