簡易檢索 / 詳目顯示

研究生: 劉彥辰
Yen-Chen Yiu
論文名稱: 同時為好的源編碼與通道編碼的短碼長設計
Short Length Code Design for Simultaneously Good for Source and Channel Code
指導教授: 林士駿
Shih-Chun Lin
口試委員: 張縱輝
Tsung-Hui Chang
林婉怡
Sabrina Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 52
中文關鍵詞: Wyner-Ziv編碼同時為好的源編碼與通道編碼低密度奇偶檢測碼增強型信任傳遞均勻資訊源mod A高斯通道
外文關鍵詞: Wyner-Ziv coding, simultaneously good for source and channel code, LDPC, Reinforced BP, uniform source, mod A Gaussian channel
相關次數: 點閱:286下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們專注在設計一組短碼長的同時為好的源編碼與通道編碼(SSC)。其主要目的是應用在Wyner-Ziv編碼當中可做為雲端網路或是分佈資訊編碼上。在魏的文獻中,提出了一組長碼長的SSC設計是基於低密度奇偶檢測碼(LDPC)作為源編碼與通道編碼,然而長碼長的設計會造成系統上過大的延遲所以並不適合在即時的應用上面。在短碼長的設計中,我們採用了一種奇偶檢查矩陣的設計可降低LDPC碼的Tanner圖內的短迴圈造成的錯誤底限(error-floor)的問題。而在相應的通道解碼演算法中,一個新的演算法稱為增強型信任傳遞(RBP)被提出,藉由在原始的信任傳遞演算法(BP)中加入一增強的項次可明顯的改善原始信任傳遞的解碼效能。在資訊源編碼演算法中,增強型信任傳遞在短碼長的設計上也是能有不錯的表現。其中我們也計算了在短碼長的區域中的理論表現的邊界,並藉由這個理論邊界與我們的模擬結果相比,得知我們所提出的LDPC碼設計在短碼長中可以為好的SSC。


    In this thesis, we focus on designing a simultaneously good for source and channel coding (SSC) with short codeword length. The main application of SSC is the Wyner-Ziv coding, which is the key technique for cloud network and distributed source coding. In Wei e.t. a.l., a long length SSC code was proposed based on low-density parity-check code (LDPC) as the source and channel code. However, a long codeword length code design prohibits real-time applications due to the intolerable latency. Aim for the short codeword length regime, a new parity check matrix, which reduces the short circles of the Tanner graph of LDPC code, is adopted. For the corresponding channel decoding algorithm, a new algorithm called as reinforced belief propagation (RBP) is proposed. By adding a reinforced term in the celebrated BP algorithm, the RBP can improve the channel decoding performance of BP significantly. As for the source encoding algorithm, the RBP also performs well with short codeword length. We also calculate the theoretical performance bounds in short length regimes. Compared with these bounds, the proposed LDPC code can serve as a good SSC in short length regime.

    第一章 序論 第二章 合作式通訊 第三章 有限碼長下的編碼率分析 第四章 短碼長的低密度位元檢查碼設計 第五章 模擬分析 第六章 結論與未來展望

    A. Sendonaris, E. Erkip, B Aazhang, "User cooperation diversity-part I System Description,"
    IEEE Trans. Commun., vol. 51, no. 11, Nov. 2003.

    A. Sendonaris, E. Erkip, B Aazhang, "User cooperation diversity-part II: Implementation Aspects and Performance Analysis,"
    IEEE Trans. Commun., vol. 51, no. 11, Nov. 2003.

    G. Kramer , M. Gastpar , and P. Gupta, "Cooperative strategies and capacity theorems for relay networks,"
    IEEE Trans. Inf. Theory, vol. 51, issue. 9, pp. 3037–3063, Sep. 2005.

    A. D. Wyner and J. Ziv, "The rate-distortion function for source coding with side information at the decoder,"
    IEEE Trans. Inf. Theory, vol. 22, no. 1 , pp.1-10, Jan 1979.

    Y. P. Wei, S. C. Lin, H. J. Su, "Graph-based Code Design for Quadratic-Gaussian Wyner-Ziv Problem with Arbitrary Side Information,"
    IEEE Proc. Int. Symp. Info. Theory (ISIT), 2012.

    A. Gersho and R. M. Gray, Vector quantization and signal compression. Kluwer Academic Fublishers, 1992.

    X. Zheng, F. C. M. Lau, C. K. Tse, "Constructing Short-Length Irregular LDPC Codes with Low Error Floor,"
    IEEE Trans. Commun., vol. 58, no. 10, Oct. 2010.

    G, Yue, B. Lu, X. Wang, "Analysis and Design of Finite-Length LDPC Codes,"
    IEEE Trans. Vehicular Technology, vol. 56, no. 3, May 2007.

    A. Ramamoorthy, R. Wesel, "Construction of Short Block Length Irregular Low-Density Parity-Check Codes,"
    Proc. IEEE ICC, Paris, France, pp.410-414, June 2004.

    M. Yang, W. E. Ryan, Y. Li, "Design of Efficeiently Encodable Moderate-Length High-Rate Irregular LDPC Codes,"
    IEEE Trans. Commun., vol. 52, no. 4, April 2004.

    V. Chandar, "Sparse graph codes for compression, sensing, and secrecy," Ph.D. dissertation, Massachusetts Institute of Technology, 2010.

    V. Kostina, S. Verdu, "Fixed-Length Lossy Compression in the Finite Blocklength Regime,"
    IEEE Trans. Inf. Theory, vol. 58, no. 6, June 2012.

    Y. Polyanskiy, H. Vincent Poor, S. Verdu, "Channel Coding Rate in the Finite Blocklength Regime,"
    IEEE Trans. Inf. Theory, vol. 56, no. 5, May 2010.

    T. Cover and J. Thomas, Elements of information Theory. New York: Wiley, 1991.

    G. D. Forney, Jr., M. D. Trott, S-Y, Chung, "Sphere-Bound-Achieving Coset Codes and Multilevel Coset Codes,"
    IEEE Trans. Inf. Theory, vol. 46, no. 3, May 2000.

    A. Braunstein, F. Kayhan, R, Zecchina, "Efficient LDPC Codes over GF(q) for Lossy Data Compression,"
    IEEE Proc. Int. Symp. Info. Theory (ISIT), Seoul, Korea, June 2009.

    T. Richardson, "Error Floors of LDPCCodes,"
    in Proc. Allerton Conf. Communciations, Control and Computing, Monticello, IL, Oct, 2003.

    R. Gallager, "Low-Density Parity-Check Codes,"
    IEEE Trans. Inf. Theory, vol. 8, Jan. 1962.

    S.-Y. Chung, G.D. Forney, Jr., T. J. Richardson, and R. Urbanke, "On the Design of Low-Density Parity-Check Codes within 0.0045 dB of the Shannon Limit,"
    IEEE Commun. Lett., vol. 5, no. 2, Feb. 2001.

    R. M. Tanner, "a recursive approach to low comlexity codes,"
    IEEE Trans. inf. Theory, vol. IT-27, no. 5, Sept. 1981.

    T. J. Richardson, M. A. Shokrollahi, R. L. Urbanke, "Design of Capacity-Approaching Irregualr Low-Density Parity-Check Codes,"
    IEEE Trans. Inf. Theory, vol. 47, no. 2, Feb. 2001.

    S. T. Brink, G. Kramer, A, Ashikhmin, "Design of Low-Density Parity-Check Codes for Modulation and Detection"
    IEEE Trans. on Commun., vol. 52, no. 4, April 2004.

    T. Filler, J. Fridrich, "Binary Quanitzation using Belief Propagation with Decimation over Factor Graphs of LDGM Codes,"
    in 45th Annual Allertion Conf. on Comm. Conrol, and Comput., Monticello, IL, USA, 2007.

    洪樂文、王淑賢,合作式通訊系統之媒介存取與路由技術,NCP Newsletter,no. 3, sept. 2011.

    Y. -W. P. Hong, W. -J. Huang, C. -C. J. Kuo, Cooperative Communications and Networking:Technologies and System Design. Springer, 2010.

    QR CODE