簡易檢索 / 詳目顯示

研究生: 陳蔚文
Wei-Wen Chen
論文名稱: 撓曲破壞柱桿件於主筋挫曲後之殘餘強度與位移研究
Load Versus Displacement Relationship of RC Columns after Buckling of Main Steel
指導教授: 陳正誠
Cheng-cheng Chen
口試委員: 歐昱辰
Yu-chen Ou
葉勇凱
Yeong-kae Yeh
黃世建
Shyh-jiann Hwang
杜怡萱
Yi-hsuan Tu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 158
中文關鍵詞: 主筋挫曲後位移主筋挫曲後強度構架內填磚牆
外文關鍵詞: frames infilled with brick walls., post-bar buckling strength, post-bar buckling displacement
相關次數: 點閱:181下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在以鋼筋混凝土構築形式之公眾建築物與校舍中,承受垂直載重的物件以柱子為主,其餘則為承重牆。就柱子而言,除為通風與照明而開窗所造成的短柱外,幾乎多為長柱,一旦柱桿件破壞,建築物整體的安全與穩定性將遭受無可彌補的災損。
    一般長柱多發生撓曲破壞的型態,而大多的文獻是用統計方式估算其在試驗過程中所發生的極限位移,或探討主筋挫曲的原因與預防對策,但是針對主筋挫曲後之位移與強度,則因為考慮到試驗的安全與困難度,而鮮少有人能在極限位移之外再討論殘餘強度與其挫曲後的位移,故試驗資料付之闕如,無法在文獻中搜尋到相關結果。
    在台灣傳統校舍中,因空間需求多半常以磚牆做為教室與教室之間的隔間材料,而現行的分析多半都忽略不計磚牆的面外力強度,但是國家地震工程研究中心(下稱國震中心) 在其校舍建築物耐震能力之現地側推試驗中,發現在現地試驗中承受垂直承載力的撓曲柱桿件開始破壞後,建築物在隔間磚牆的面外方向存有部分殘餘強度因而延緩了倒塌,故可利用磚牆補強的方式,藉以提高校舍結構物在面外方向的耐震能力。如此,在延緩倒塌與增加耐震能力的雙重機制下,可增加民眾於地震中存活下來的機率。
    在本文中,筆者利用了華盛頓大學維護的柱子資料庫,嘗試建立主筋挫曲後位移與強度的模型,並定義柱桿件的強度衰減方法,為柱桿件建議了一個三折線的載重位移曲線,其中的關鍵點分別為最大階段點、主筋挫曲階段點、主筋挫曲後階段點與殘餘階段點。在構架內填磚牆的部分,本文以五個足尺比例之試體,試圖建立補強與未補強的構架殘餘強度之曲線模型,其中補強的工法,本文在不改變現有門窗的配置下,而僅以黏貼碳纖維貼片(CFRP)於教室隔間的磚牆上,藉此提高其面外之抗震能力。
    根據上述的柱桿件模型分析發現以下現象:一、混凝土保護層的剝落與主筋的挫曲為柱桿件破壞前的指標;二、當柱桿件強度進入塑性鉸後期,可將鋼筋的降伏強度提高1.25倍做為計算的基準,與試驗的挫曲強度與挫曲後強度有相當程度的吻合。而在構架內填磚牆的殘餘強度模型部分,有以下的現象:一、構架含磚牆試驗的殘餘強度是清楚呈現,且分析與試驗結果相近;二、將補強與未補強的構架相比,補強者之側向強度和殘餘強度皆會提升;三、柱桿件的垂直承載力在破壞後會轉移至磚牆上,磚牆便扮演另一個傳力機制,即磚牆和拉力鋼筋所形成的力偶將支撐構架,而不致立即的倒塌。
    將筆者建議的柱桿件曲線模型與資料庫試驗比對,曲線走勢與試驗相符,故建議之模型屬合理假設。而為更進一步驗證本研究模型之預測結果可否實際應用在其他試驗場資料上,特試用國震中心於不同年度所完成的四座單柱試體來分析,結果顯示,本建議模型均能合理評估並符合試驗結果。在應用於工程界的部分,則採用國震中心之二層樓三跨之單面教室構架的試驗並做側推分析,其中撓曲桿件之塑性鉸利用本文的模型模擬,其結果也與試驗的破壞趨勢相仿。而在構架內填磚牆的殘餘強度曲線模型部分,本建議模型與試驗的載重位移具良好相關性。


    Reinforced concrete (RC) columns are the most important elements in public and school buildings for bearing vertical loads. Generally, columns are slender and can be formed to meet ventilation and lighting requirements. Once columns fail, the loss in overall building safety and stability induces irreparable damage.
    Flexural failure usually occurs in slender columns; a great deal of discussion in the literature is about ultimate displacement, as calculated with the statistical method. However, there has been little discussion on post-bar buckling displacement and residual strength for flexural failure modes because test-related information is not available for investigation; most tests aim to investigate the reasons for buckling and its prevention. Laboratory safety and test difficulty are the main concerns, so few studies have focused on the residual strength and bar buckling displacement after ultimate displacement.
    In old Taiwanese school buildings, brick walls are widely used as partition structures for larger space requirements, but the strength of the brick walls due to the out-of-plane direction is ignored in most cases. The National Center for Research on Earthquake Engineering (NCREE) investigated the residual strength in-situ pushover test for the seismic capacity of school buildings out-of-plane. Rather than attempting to change existing doors and windows, it seems more convenient to retrofit the confined brick walls between classrooms with carbon fiber reinforced plastic to improve their out-of-plane seismic capacities. The residual strength is derived from the fact that the infilled brick wall takes over the axial load from the columns and delays their axial failure.
    In this study, the University of Washington database of columns was used to propose a formula for the post-bar buckling displacement and residual strength as well as a trilinear curve model for the load displacement at four points: the maximum state point, the bar buckling state point, post-bar buckling state point, and residual state point. For the RC frames infilled with brick walls, a residual strength model for brick walls is proposed; tests were conducted on five full-scale specimens.
    Analysis based on the proposed model yielded the following results: (1) Fail indicators for the cover spalled with bar buckling. (2) Reinforcement of the yield strength increased 1.25 times over that calculated when the column strength was at the plastic hinge, and satisfied the test results of strength for the BB and PB states. (3) The residual strength of frames infilled with brick walls, however, was clearly observed. (4) The retrofitted specimens exhibited improved structural performance compared to non-retrofitted specimens in terms of both the maximum strength and residual strength. (5) This residual strength can prevent frames from immediate collapse.
    For comparison, the analysis results were assumed to show a similar trend to the test results; this assumption is proved reasonable. To further validate this proposed model as being able to efficiently predict other laboratory experiments and practical application in field tests, research on four single-column specimens constructed at the NCREE was adopted to analyze the results. The proposed model was found to effectively and reasonably predict the test results. For practical engineering applications, a single frame of a classroom test containing the second floor with three spans by the NCREE was performed by pushover analysis. The setting of plastic hinges employed the proposed model of this study to simulate flexural failure. The results showed that the analysis results had a similar trend to the results of the collapse test.. For the model of the RC frames infilled with brick walls, the proposed analytical model predicted the out-of-plane load–displacement relationship of the frames with flexural failure.

    目 錄 摘 要 I Abstract III 誌 謝 V 目 錄 VII 表索引 XIII 圖索引 XV 符號說明 XIX 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機、目的與範疇 3 1.2.1 研究動機 3 1.2.2 研究目的 3 1.2.3 研究柱桿件之範疇 3 1.3 研究方法 4 1.4 適用範圍 5 1.5 預期成果與本文架構 5 1.6 本章圖表 7 第二章 文獻回顧 9 2.1 前言 9 2.2 撓曲破壞衰減方面 9 2.2.1 現有規範之相關規定 9 2.2.2 現有之文獻與經驗公式 11 2.3 磚牆面外方向 12 2.3.1 慣性力部分 13 2.3.2 耐震容量部分 14 2.3.3 纖維貼片補強試體部分 14 2.4 本章圖表 16 第三章 柱構架載重位移曲線分析模型建立 17 3.1 柱構架破壞過程 17 3.1.1 保護層剝落 17 3.1.2 主筋挫曲 18 3.1.3 剪裂縫產生 18 3.1.4 塑性鉸之角度增加與試體強度下降 18 3.1.5 構架內填磚牆的殘餘強度 19 3.2 建議分析之包絡線模型 19 3.3 主筋挫曲階段後相關強度與位移定義 19 3.3.1 主筋挫曲位移與強度 20 3.3.2 主筋挫曲後位移與強度 20 3.3.3 內填磚牆殘餘強度與位移 20 3.4 構架模型假設-強度部分 20 3.4.1 主筋挫曲階段後相關假設 20 3.4.2 構架內填磚牆強度 21 3.4.3 構架內填磚牆殘餘強度 22 3.5 構架模型假設-位移部分 22 3.5.1 主筋挫曲階段後相關假設 22 3.5.2 構架內填磚牆殘餘位移 22 3.6 材料應力應變曲線關係 23 3.6.1 混凝土應力應變曲線關係 23 3.6.2 鋼筋應力應變曲線關係 29 3.6.3 磚牆應力應變曲線關係 29 3.6.4 CFRP貼片應力應變曲線關係 29 3.7 構架分析方法-強度部分 29 3.7.1 主筋挫曲階段後分析方法 29 3.7.2 構架內填磚牆殘餘強度分析方法 30 3.8 構架分析方法-位移部分 32 3.8.1 塑性鉸分析 32 3.8.2 fmincon 函數應用 35 3.9 模型各階段點的強度與位移計算方法 36 3.9.1 上升段部分 36 3.9.2 考量軸力效應平台段部分 37 3.9.3 下降段部分 37 3.9.4 柱桿件殘餘段部分 37 3.9.5 構架內填磚牆殘餘段部分 37 3.10 本章圖表 39 第四章 分析資料庫的分類與規劃 49 4.1 前言 49 4.2 華盛頓大學(UW)柱子資料庫簡介 49 4.3 柱桿件破壞資料庫分類與規劃 50 4.3.1 柱桿件破壞分類條件 50 4.3.2 資料庫規劃結果 50 4.4 撓曲柱破壞資料庫分類與規劃 50 4.4.1 撓曲柱桿件破壞分類條件 50 4.4.2 資料庫規劃結果 51 4.5 挫曲與非挫曲柱子資料庫分類與規劃 51 4.5.1 挫曲與非挫曲柱子分類條件 51 4.5.2 資料庫規劃結果 52 4.6 挫曲試體資料庫選擇 53 4.6.1 21支試體材料性質特性 54 4.6.2 21支試體特色 54 4.7 本章圖表 56 第五章 分析比較與討論 83 5.1 資料庫比較 83 5.1.1 強度部分預測與比較 83 5.1.2 位移部分預測與比較 83 5.2 試驗場比較 85 5.2.1 盧錦嫻試驗 85 5.2.2 楊智斌試驗 85 5.2.3 試驗場試驗結果 86 5.2.4 強度部分預測與比較 86 5.2.5 位移部分預測與比較 86 5.3 構架內填磚牆比較 87 5.3.1 盧錦嫻試驗 87 5.3.2 構架內填磚牆試驗結果 88 5.3.3 構架內填磚牆強度與位移比較 88 5.3.4 內填磚牆殘餘強度與位移比較 89 5.4 單面構架試驗比較 90 5.4.1 邱聰智試驗 90 5.4.2 試驗結果 90 5.4.3 國震中心分析方法 91 5.4.4 本文建議之撓曲破壞非線性鉸設定 94 5.4.5 側推分析的結果與比較 95 5.5 討論 96 5.5.1 資料庫分析的整體觀察 96 5.5.2 主筋挫曲階段部分 97 5.5.3 主筋挫曲後階段部分 97 5.5.4 軸壓比變化 98 5.5.5 構架內填磚牆部分 99 5.5.6 構架側推分析部分 100 5.6 本章圖表 102 第六章 結論與建議 145 6.1 前言 145 6.2 結論 146 6.2.1 挫曲柱載重位移分析結果 146 6.2.2 建議之載重位移模型 147 6.2.3 工程實務應用 148 6.3 後續研究建議 148 參考文獻 151 附錄 159 A. fmincon函數計算應用 161 B. 國震中心耐震詳細評估參數檔內容 167 作者簡介 171

    1.中央氣象局,地震活動彙整,上網日期:2011/10/9, 摘自:http://www.cwb.gov.tw/V7/earthquake/rtd_eq.htm (2011)。
    2.交通部中央氣象局,「交通部中央氣象局有感地震報告發布作業要點」,中央氣象局 ,台北 (2010)。
    3.Lehman, D.E., Gookin, S.E., Nacamull, A.M., Moehle, J.P., “Repair of Earthquake-Damaged Bridge Columns,” ACI Structural Journal, Vol. 98, No. 2, pp. 233-242 (2001)
    4.Abdullah, Takiguchi, K., “Complete Collapse Test of Reinforced Concrete Columns,” Structural Engineering and Mechanics, Vol. 12, No. 2, pp. 157-168 (2001)
    5.江文卿、邱聰智、蕭輔沛、杜怡萱、簡文郁、葉勇凱 等,「花蓮縣新城國中校舍現地實驗-靜態單向側推」,國家地震工程研究中心報告 (NCREE-08-008),台北 (2008)。
    6.江文卿、邱聰智、蕭輔沛、杜怡萱、簡文郁、葉勇凱 等,「雲林縣口湖國小校舍現地靜態推垮實驗」,國家地震工程研究中心 (NCREE-08-044),台北 (2008)。
    7.Sezen, H., Moehle, J.P., “Shear Strength Model for Lightly Reinforced Concrete Columns,” Journal of Structural Engineering, Vol. 130, No. 11, pp. 1692-1703 (2004)
    8.Zhu, L., Elwood, K.J., Haukaas, T., “Classification and Seismic Safety Evaluation of Existing Reinforced Concrete Columns,” Journal of Structural Engineering, Vol. 133, No. 9, pp. 1316-1330 (2007)
    9.Yoshikawa, H., Miyagi, T., Ductility and Failure Modes of Single Reinforced Concrete Columns, In: Shing, P. B., Tanabe, T.-a.,Modeling of Inelastic Behavior of RC Structures under Seismic Loads, Amer Society of Civil Engineers, USA, pp.351-368 (2001)
    10.ASCE/SEI 41-06, Seismic Rehabilitation of Existing Buildings, American Society of Civil Engineers, Reston, Virginia (2007)
    11.ATC 40, Seismic Evaluation and Retrofit of Concrete Buildings, Appiled Technology Council, Redwood City, California (1996)
    12.蔡益超、宋裕祺、謝尚賢,「建築物耐震評估法之修訂及視窗化研究」,內政部建築研究所 (PG9403-0076 ),台北 (2005)。
    13.葉勇凱、蕭輔沛、沈文成、楊耀昇、黃世建,「鋼筋混凝土建築物耐震能力詳細評估分析方法 (推垮分析)」,國家地震工程研究中心報告 (NCREE-09-015),台北 (2009)。
    14.葉勇凱、周德光、蕭輔沛,「空間構架單一模態側推分析之探討」,國家地震工程研究中心報告 (NCREE-11-029),台北 (2011)。
    15.FEMA 273, Nehrp Guidelines for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, D.C. (1997)
    16.FEMA 356, Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, D.C. (2000)
    17.FEMA 450, Nehrp Recommended Provisions and Commentary for Seismic Regulations for New Buildings and Other Structures, Federal Emergency Management Agency, Washington, D.C. (2003)
    18.李佳勤,「台灣中小學校舍結構耐震能力評估之研究」,碩士論文,國立臺灣科技大學,台北 (2007)。
    19.Berry, M.P., Eberhard, M.O., “Practical Performance Model for Bar Buckling,” Journal of Structural Engineering, Vol. 131, No. 7, pp. 1060-1070 (2005)
    20.Mattock, A.H.,discussion of Rotational Capacity of Re Inforced Concrete Beams,paper by Corley, W. G.,Journal of Structural Engineering ASCE,Vol.93(pp. 519-512)(1967)
    21.Jiang, H., Lu, X., Kubo, T., “Damage Displacement Estimation of Flexure-Dominant RC Columns,” Advances in Structural Engineering, Vol. 13, No. 2, pp. 357-368 (2010)
    22.Mander, J.B., Priestley, M.J.N., Park, R., “Theoretical Stress-Strain Model for Confined Concrete,” Journal of Structural Engineering, Vol. 114, No. 8, pp. 1804-1826 (1988)
    23.Chen, W.-W., Yeh, Y.-K., Hwang, S.-J., Lu, C.-H., Chen, C.-C., “Out-of-Plane Seismic Behavior and Cfrp Retrofitting of RC Frames Infilled with Brick Walls,” Engineering Structures, Vol. 34, No. 1, pp. 213-224 (2012)
    24.Abrams, D., Angel, R., Uzarski, J., “ Out-of-Plane Strength of Unreinforced Masonry Infill Panels,” Earthquake Spectra, Vol. 12, No. 4, pp. 825-844 (1996)
    25.Dafnis, A., Kolsch, H., Reimerdes, H.-G., “Arching in Masonry Walls Subjected to Earthquake Motions,” Journal of Structural Engineering, Vol. 128, No. 2, pp. 153-159 (2002)
    26.Lam, N.T.K., Griffith, M., Wilson, J., Doherty, K., “Time-History Analysis of Urm Walls in out-of-Plane Flexure,” Engineering Structures, Vol. 25, No. 6, pp. 743-754 (2003)
    27.Tu, Y.-H., Chuang, T.-H., Liu, P.-M., Yang, Y.-S., “Out-of-Plane Shaking Table Tests on Unreinforced Masonry Panels in RC Frames,” Engineering Structures, Vol. 32, No. 12, pp. 3925-3935 (2010)
    28.Rabinovitch, O., Madah, H., “Finite Element Modeling and Shake-Table Testing of Unidirectional Infill Masonry Walls under out-of-Plane Dynamic Loads,” Engineering Structures, Vol. 33, No. 9, pp. 2683-2696 (2011)
    29.李秉乾、孫崇斌,「有邊界柱樑之磚牆極限軟化桁架分析及面外試驗」,國家地震工程研究中心 (NCREE-03-038),台北 (2003)。
    30.Corradi, M., Borri, A., Vignoli, A., “Strengthening Techniques Tested on Masonry Structures Struck by the Umbria-Marche Earthquake of 1997-1998,” Construction and Building Materials, Vol. 16, No. 4, pp. 229-239 (2002)
    31.Altin, S., Anil, O., Kara, M.E., Kaya, M., “An Experimental Study on Strengthening of Masonry Infilled RC Frames Using Diagonal Cfrp Strips,” Composites Part B: Engineering, Vol. 39, No. 4, pp. 680-693 (2008)
    32.Erdem, I., Akyuz, U.,Analytical Investigation of Lateral Strength of Masonry Infilled RC Frames Retrofitted with Cfrp, 1801 Alexander Graham Bell Drive, Reston, VA 20191-4400, United States, pp. 302-310 (2010)
    33.Hamed, E., Rabinovitch, O., “Failure Characteristics of Frp-Strengthened Masonry Walls under out-of-Plane Loads,” Engineering Structures, Vol. 32, No. 8, pp. 2134-2145 (2010)
    34.Willis, C.R., Seracino, R., Griffith, M.C., “Out-of-Plane Strength of Brick Masonry Retrofitted with Horizontal Nsm Cfrp Strips,” Engineering Structures, Vol. 32, No. 2, pp. 547-555 (2010)
    35.Wight, J.K., MacGregor, J.G., Reinforced Concrete: Mechanics and Design (6th Edition), Prentice Hall, New Jersey (2011)
    36.ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary, American Concrete Institute, Farmington Hills, MI (2007)
    37.Scott, B.D., Park, R., Priestley, M.J.N., “Stress-Strain Behavior of Concrete Confined by Overlapping Hoops at Low and High Strain Rates,” Journal of The American Concrete Institute, Vol. 79, No. 1, pp. 13-27 (1982)
    38.Ewing, B.D., Kowalsky, M.J., “Compressive Behavior of Unconfined and Confined Clay Brick Masonry,” Journal of Structural Engineering, Vol. 130, No. 4, pp. 650-661 (2004)
    39.Kent, D.C., Park, R., “Flexural Members with Confined Concrete,” Journal of the Structural Division, Vol. 97, No. ST 7, pp. 1969-1990 (1971)
    40.ACI Committee 363, State-of-the-Art Report on High-Strength Concrete (ACI 363R-92), American Concrete Institute, Farmington Hills, MI (1992)
    41.Razvi, S., Saatcioglu, M., “Confinement Model for High-Strength Concrete,” Journal of structural engineering New York, N.Y., Vol. 125, No. 3, pp. 281-288 (1999)
    42.Carrasquillo, R.L., Nilson, A.H., Slate, F.O., “Properties of High Strength Concrete Subject to Short-Term Loads,” Journal of The American Concrete Institute, Vol. 78, No. 3, pp. 171-178 (1981)
    43.Wallace, J.W., Ibrahim, Y.A., Biax, Strength Analysis of Reinforced Concrete Sections, Ver: For MS Windows, University of California, Berkeley, Calif. (1996)
    44.Paulay, T., Priestley, M.J.N., Seismic Design of Reinforced Concrete and Masonry Buildings, John Wiley and Sons, New York (1992)
    45.Priestley, M.J.N., Seible, F., Calvi, G.M., Seismic Design and Retrofit of Bridges, John Wiley and Sons, New York (1996)
    46.Bayrak, O., Sheikh, S.A., “Plastic Hinge Analysis,” Journal of Structural Engineering, Vol. 127, No. 9, pp. 1092-1100 (2001)
    47.Priestley, M.J.N., Park, R., “Strength and Ductility of Concrete Bridge Columns under Seismic Loading,” ACI Structural Journal, Vol. 84, No. 1, pp. 61-76 (1987)
    48.Sheikh, S.A., Khoury, S.S., “Confined Concrete Columns with Stubs,” ACI Structural Journal, Vol. 90, No. 4, pp. 414-431 (1993)
    49.Panagiotakos, T.B., Fardis, M.N., “Deformations of Reinforced Concrete Members at Yielding and Ultimate,” ACI Structural Journal, Vol. 98, No. 2, pp. 135-148 (2001)
    50.Bae, S., Bayrak, O., “Plastic Hinge Length of Reinforced Concrete Columns,” ACI Structural Journal, Vol. 105, No. 3, pp. 290-300 (2008)
    51.Bae, S., Bayrak, O., “Seismic Performance of Full-Scale Reinforced Concrete Columns,” ACI Structural Journal, Vol. 105, No. 2, pp. 123-133 (2008)
    52.Moehle, J.P., “Displacement-Based Design of RC Structures Subjected to Earthquakes,” Earthquake Spectra, Vol. 8, No. 3, pp. 403-428 (1992)
    53.Berry, M.P., “Estimating Flexural Damage in Reinforced Concrete Columns,” Master thesis, Univisty of Washington, Seattle(2003)
    54.Montgomery, D.C., Runger, G.C., Applied Statistics and Probability for Engineers (3rd Edition), John Wiley & Sons, Inc., New York (2003)
    55.Mathworks, Matlab, Ver: R2011a, Mathwords, Inc., (2011)
    56.Berry, M., Eberhard, M., “Performance Models for Flexural Damage in Reinforced Concrete Columns,” Pacific Earthquake Engineering Research Center College of Engineering University of California (PEER Report 2003/18), Berkeley (2003)
    57.Sheikh, S., Uzumeri, S.M., “Analytical Model for Concrete Confinement in Tied Columns,” Journal of the Structural Division, Vol. 108, No. ST12, pp. 2703-2722 (1982)
    58.盧錦嫻,「校舍隔間磚牆面外耐震性能與碳纖維貼片補強之實尺寸實驗研究」,碩士論文,國立台灣科技大學,台北市 (2006)。
    59.楊智斌,「新城國中校舍實尺寸柱桿件之耐震測試研究」,碩士論文,國立台灣科技大學,台北市 (2005)。
    60.Civil & Environmental Engineering University of Washington, Column Database Page, Accessed: 2011, 09,06, Available at: http://www.ce.washington.edu/~peera1/ (2003)
    61.Berry, M., Parrish, M., Eberhard, M., “Peer Structural Performance Database User's Manual,” Pacific Earthquake Engineering Research Center, Berkeley (2004)
    62.Wang, Q., G.Zhao,Study on the Ductility of High Strength Reinforced Concrete Columns 12th International Conference on STRUCTURAL MECHANICS IN REACTOR TECHNOLOGY, Stuttgart, Germany, Aug. 15-20, pp. 73-77 (1993)
    63.中華人民共和國住房和城鄉建設部,建築抗震設計規範 GB 50011-2010, 中國建築工業出版社,北京 (2010)。
    64.內政部營建署,建築物耐震設計規範及解說, 內政部營建署營建雜誌,台北 (2011)。
    65.Mau, S.T., “Effect of Tie Spacing on Inelastic Buckling of Reinforcing Bars,” ACI Structural Journal, Vol. 87, No. 6, pp. 671-677 (1990)
    66.中國土木水利工程學會混凝土工程委員會,混凝土工程設計規範與解說(土木401-100), 科技圖書,台北市 (2011)。
    67.Inoue, S., Miyagawa, T., Fujii, M., “An Experimental Study on Buckling of Longitudinal Reinforcement in Reinforced Concrete Members,” Zairyo/Journal of the Society of Materials Science, Japan, Vol. 40, No. 456, pp. 1208-1213 (1991)
    68.Campione, G., Minafo, G., “Compressive Behavior of Short High-Strength Concrete Columns,” Engineering Structures, Vol. 32, No. 9, pp. 2755-2766 (2010)
    69.Lopes, A.V., Lopes, S.M.R., do Carmo, R.N.F., “Effects of the Compressive Reinforcement Buckling on the Ductility of R.C. Beams in Bending,” Engineering Structures, Vol. 37, No. 4, pp. 14-23 (2012)
    70.邱聰智、邱建國、葉勇凱、簡文郁、鍾立來、周德光,「典型校舍耐震補強設計與驗證」,國家地震工程研究中心報告 (NCREE-08-038),台北 (2008)。
    71.鍾立來、葉勇凱、簡文郁、蕭輔沛、沈文成、邱聰智 等,「校舍結構耐震評估與補強技術手冊第二版」,國家地震工程研究中心報告 (NCREE-09-023),台北 (2009)。
    72.Elwood, K.J., Moehle, J.P., “Drift Capacity of Reinforced Concrete Columns with Light Transverse Reinforcement,” Earthquake Spectra, Vol. 21, No. 1, pp. 71-89 (2005)
    73.Elwood, K.J., Moehle, J.P., “Axial Capacity Model for Shear-Damaged Columns,” ACI Structural Journal, Vol. 102, No. 4, pp. 578-587 (2005)
    74.陳奕信,「含磚牆RC 建築結構之耐震診斷」,博士論文,國立成功大學,台南 (2003)。
    75.CSI, ETABS :Extended 3d Analysis of Building Systems, Nonlinear Version 9.5, User's Manual, Computer and Structures, Inc., , Berkeley, California (2008)
    76.CSI, ETABS : Extended 3d Analysis of Building Systems, Nonlinear Version 9.5, Ver, Computer and Structures, Inc., Berkeley, California (2008)

    QR CODE