簡易檢索 / 詳目顯示

研究生: 紀凱程
Kai-Cheng Ji
論文名稱: 在LTE-A下考量D2D中繼用戶意願之效能評估
Performance Evaluation of Considering D2D Relay User’s Willingness in LTE-A
指導教授: 黎碧煌
Bih-Hwang Lee
口試委員: 鍾添曜
Tein-Yaw Chung
吳傳嘉
Chwan-Chia Wu
陳俊良
Jiann-Liang Chen
黎碧煌
Bih-Hwang Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 92
中文關鍵詞: 裝置間通訊裝置間中繼通訊中繼選擇社交關係意願評估機制循環排程演算法
外文關鍵詞: Device-to-device Communication, Relay-assisted D2D Communication, Relay Selection, Social Relations, Willingness Assessment Mechanism, Round-robin Scheduling Algorithm
相關次數: 點閱:222下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,智慧型行動裝置的普及化,使得每個人幾乎都有智慧型行動裝置,行動通訊服務也隨著這股潮流下蓬勃發展,而後因為行動通訊網路的成熟,促使更多物聯網(Internet of Thing, IoT)服務應用應運而生,像是智慧家庭、智慧工廠、車聯網(Vehicle-to-Everything, V2X),等都是現在熱門的議題與服務應用,然而快速成長的行動裝置數量,導致現有行動通訊網路框架下的基地台負載越來越重,使得行動通訊網路必須要更加提升,以提供更好的服務品質、有效率利用有限頻譜資源、擴展網路覆蓋率、裝置節能等多面向的改善與進步,提供用戶更優質的服務品質與體驗。
裝置間通訊技術(Device-to-Device Communication, D2D Communication)是其中一項改善現有網路的方式,可以達到多面向服務品質的改善,提供用戶複用有限的頻譜資源進行通訊,不需基地台轉送資料,減輕基地台的負載,且裝置間中繼通訊藉由中繼用戶的協助通道品質較差的用戶資料轉傳,解決基地台的邊緣用戶通道品質較差的問題。
本論文主要透過意願評估機制,找出意願度較佳的用戶擔任中繼用戶,不只考量中繼用戶本身的條件,並且中繼用戶幫助其他用戶之後,其他用戶幫助中繼的意願度將會提升,未來當中繼用戶需要被幫助時將會更容易被幫助,對於通道品質較差的用戶利用中繼轉送資料的方式,進而提升服務品質,對於系統、中繼用戶、通道品質較差的用戶都同時獲得好處,並且在分配頻譜資源時,藉由頻譜的複用使有限的頻譜資源能更有效率被利用,更利用循環排程演算法使得每個用戶都有機會進行傳輸。
由模擬結果顯示,本論文藉由中繼用戶幫助通道品質較差的用戶進行轉傳,提升頻譜資源的利用率,相同的頻譜資源下,能夠傳輸更多資訊量,提升整體系統的傳輸量。中繼選擇的演算法中考量到中繼的意願程度,如果是依照用戶的位置區分成中心用戶與邊緣用戶,邊緣用戶無法選擇到最好的中繼用戶進行轉傳,但是效能上與其他最好的方法相差不遠,如果是依照用戶的特質區分成熱情用戶與冷漠用戶,熱情用戶樂於幫助他人轉傳資料,也容易被他人幫助,因此效能上相較於冷漠用戶好。
關鍵字:裝置間通訊、裝置間中繼通訊、中繼選擇、社交關係、意願評估機制、循環排程演算法


In recent years, the popularity of smart mobile devices has led almost everyone to have smart mobile devices, making mobile communication services evolve with the trend, and because of the maturity of mobile communication networks, more Internet of Thing (IoT) applications are expected to be shipped, such as smart homes, smart factories, and Vehicle-to-Everything (V2X), are hot topics and applications, the number of fast-growing mobile devices has also led to an increase in load on the base stations of mobile communication networks. The mobile communication network must be upgraded to provide better service quality, efficient spectrum utilization, network coverage, and energy efficiency to provide users with better service quality and experience.
Device-to-Device (D2D) communication technology is one of the ways to improve the existing networks. It can achieve much quality improvement, provide users to reuse the limited spectrum resources, eliminate the need for base station to transfer data, reduce the load on the base station, and the relay-assisted D2D communication can better solve the problem of user of poor channel quality in base stations.
This thesis mainly uses the willingness assessment mechanism to identify users with better willingness to serve as relays. Not only the conditions of the relay users themselves, but also the relay users help other users, and it will be easier to be assisted when the relay users need to be helped in the future, thus encouraging the general users to use as relays. It uses relay for users with poor channel quality. The data approach improves service quality and benefits the users of systems, relays, and poor channels at the same time. When spectrum resources are allocated, limited spectrum resources can be used more efficiently. Using a cyclic scheduling algorithm gives each user an opportunity to transmit.
The simulation results show that this thesis helps users with poor channels to transmit and improve the utilization of spectrum resources. Under the same spectrum resources. Although the transmission amount can’t be greatly improved when considering the degree of willingness of the relay user, it can effectively consider the willingness of the relay user, and is not far from the performance of other best methods. In the relay selection algorithm, the willingness of the relay is considered. If the user is divided into the center user and the edge user according to the user's location, the edge user can’t select the best relay user to transfer, but the performance is the same as the other. If they are divided into enthusiastic users and indifferent users according to the characteristics of users, enthusiastic users are willing to help others to transfer data, and are also easily helped by others, so the performance is better than that of indifferent users.
Key words: Device-to-device Communication, Relay-assisted D2D Communication, Relay Selection, Social Relations, Willingness Assessment Mechanism, Round-robin Scheduling Algorithm

摘要 iv Abstract vi 誌謝 viii 目次 ix 圖目次 xii 表目次 xv 第一章 緒論 1 1.1 簡介 1 1.2 研究動機與目的 2 1.3 章節概要 3 第二章 LTE-A 概述 4 2.1 LTE-A 介紹 4 2.1.1實體層傳輸技術 5 2.1.2訊框架構 8 2.1.3排程演算法 10 2.1.4訊號雜訊比 11 2.1.5規格演進 12 2.2 LTE-A 裝置間通訊 14 2.2.1 LTE-A裝置間通訊的控制 15 2.2.2 LTE-A集中式裝置間通訊的控制模式 16 2.2.3 LTE-A 裝置間通訊的優勢及應用 18 2.3相關研究 21 2.3.1 細胞間的中繼 21 2.3.2 細胞內的中繼 22 2.3.3 提升中繼用戶的意願度機制 23 2.4問題描述 25 第三章 以意願評估機制之裝置間中繼通訊 26 3.1 研究方法 26 3.2 初始情境配置 27 3.3以意願評估機制尋找適合的中繼用戶 30 3.3.1 中繼發現階段 31 3.3.2 中繼候選階段 33 3.3.3 中繼選擇階段 35 3.3.3.1 中繼選擇的考量因素 36 3.3.3.2 中繼選擇的演算法 42 3.4 頻譜資源分配 46 3.4.1 中心用戶的資源分配 47 3.4.2 邊緣用戶的資源分配 48 第四章 系統模擬與結果 53 4.1 模擬環境與參數 53 4.2 模擬情境設定與假設 56 4.3 效能評估項目 57 4.4 模擬結果分析與比較 60 第五章 結論與未來研究 72 參考文獻 74

[1]黃耀瑋,” 電信商全力擴建4G網路 2018年LTE用戶上看二十億,” 新通訊 2014 年 3 月號 0 期<<趨勢眺望>>。
[2]C. H. Yu et al, “Resource Sharing Optimization for Device-to-Device Communication Underlaying Cellular Networks” in IEEE Transaction on Wireless Communications., vol. 10, no. 8, pp. 2752-2763, Aug. 2011.
[3]3GPP, “Overall description (Release 9),” TS 36.300 V9.10.0, Jun. 2013.
[4]A. Ghosh et al, “LTE-Advanced: Next-Generation Wireless Broadband Technology,” in IEEE Wireless Communications., vol. 17, no. 3, pp. 10-22, Jun. 2010.
[5]H. Holma and A. Toskala, “LTE for UMTS:OFDMA and SC-FDMA Based Radio Access,” John Wiley & Sons , Apr. 2009.
[6]M.I. Salman et al, “Radio resource management (RRM) for green 3GPP long term evolution (LTE) cellular networks: review, and trade-offs,” in The Institution of Electronics and Telecommunication Engineers (IETE) Technical Review, vol. 30, no. 3, pp. 257-269, 2013.
[7]3GPP, “Further advancements for E-UTRA physical layer aspects (Release 9),” TR 36.814 V9.2.0, Mar. 2017.
[8]3GPP, “Physical Channels and Modulation (Release 14),” TS 36.211 V14.2.0, Mar. 2017.
[9]N. Abu-Ali et al, “Uplink scheduling in lte and lte-advanced: Tutorial, survey and evaluation framework,” in IEEE Communications Surveys & Tutorials, vol. 16, no. 3, pp. 1239-1265, 2014.
[10]H. Kuribayashi et al, “A Mobility-Based Mode Selection Technique for Fair spatial Dissemination of Data in Multi-Channel Device-to-Device Communication,” in the proceeding of IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 2016.
[11]S. Lee et al, “Proportional fair frequency-domain packet scheduling for 3GPP LTE uplink,” in IEEE INFOCOM, Rio de Janeiro, Brazil, 2009, pp. 2611-2651.
[12]S. Zhenqi et al, “Research on uplink scheduling algorithm of massive m2m and h2h services in lte,” in the proceeding of IET International Conference on Information and Communications Technologies (IETICT 2013), Beijing, China, 2013, pp. 365-369.
[13]M. Salah et al, “Evaluating uplink schedulers in lte in mixed traffic environments,” in the proceeding of IEEE International Conference on Communications (ICC), Kyoto, Japan, 2011.
[14]S. AlQahtani and M. Alhassany, “Comparing Different LTE Scheduling Schemes,” in the proceeding of IEEE 9th International Wireless Communications and Mobile Computing Conference (IWCMC), Sardinia, Italy, 2013, pp. 264-269.
[15]Y. Wang and C. Chuang, “Efficient eNB Deployment Strategy for Heterogeneous Cells in 4G LTE Systems,” Computer Networks, vol. 79, no. 14, pp. 297-312, Jan. 2015.
[16]H. Zarrinkoub, “Understanding LTE with MATLAB: from mathematical modeling to simulation and prototyping,” John Wiley & Sons, 2014.
[17]A. Damnjanovic et al, “A survey on 3GPP heterogeneous networks,” in IEEE Wireless Commun., vol. 18, no. 3, Jun. 2011.
[18]X. Lin et al, “An overview of 3GPP device-to-device proximity services,” in IEEE Communications Magazine, vol. 52, no. 4, pp. 40 - 48, Apr. 2014.
[19]3GPP, “Proximity-based services (ProSe) (Release 12),” TS 23.303 V12.8.0, Mar. 2016.
[20]Ruofei Ma, Yao-Jen Chang, Hsiao-Hwa Chen, and Chun-Yuan Chiu, “On Relay Selection Schemes for Relay-Assisted D2D Communications in LTE-A Systems,” IEEE Transactions on Vehicular Technology, Vol. 66, No. 9, September 2017.
[21]Maryam Hajjar; Ghadah Aldabbagh; Nikos Dimitriou; Moe Z. Win, “Hybrid Clustering Scheme for Relaying in Multi-Cell LTE High User Density Networks,” IEEE Access, Vol.5, pp.4431-4438, 2017.
[22]吳志強,李宜泓,許芳瑜,” 支援直接通訊模式 D2D鄰近通訊技術發展火速,” 新通訊2013年9月號151期<<技術前瞻>>。
[23]Z. Chen et al, “Load balancing for D2D-based relay communications in heterogeneous network,” in the proceeding of IEEE 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), Mumbai, Indian, 2015, pp. 23-29.
[24]F. Chiti et al, “Interference aware approach for D2D communications,” in the proceeding of IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 2016.
[25]C. Yeh et al, “LTE-D broadcast with distributed interference-aware D2D resource allocation,” in the proceeding of IEEE 7th International Conference on Ubiquitous and Future Networks (ICUFN), Sapporo, Japan, 2015, pp. 165-170.
[26]M. Zhao et al, “A Two-Stages Relay Selection And Resource Allocation Joint Method for D2D Communication System,” in the proceeding of IEEE Wireless Communications and Networking Conference (WCNC), Doha, Qatar, Sep. 2016.
[27]S. Mumtaz et al, "Energy efficient interference-aware resource allocation in LTE-D2D communication", in the proceeding of IEEE International Conference on Communications (ICC), Sydney, Australia, 2014, pp. 282-287.
[28]P. Li and S. Guo, “Incentive mechanisms for device-to-device communications,” in IEEE Network, vol. 29, no. 4, pp. 75-79, July-August 2015.
[29]Y. Zhang, L. Song, W. Saad, Z. Dawy and Z. Han, “Contract-Based Incentive Mechanisms for Device-to-Device Communications in Cellular Networks,” in IEEE Journal on Selected Areas in Communications, vol. 33, no. 10, pp. 2144-2155, Oct. 2015.
[30]N. Mastronarde, V. Patel, J. Xu and M. van der Schaar, “Learning relaying strategies in cellular D2D networks with token-based incentives,” in Globecom Workshops (GC Wkshps), IEEE, Atlanta, GA, pp. 163-169, 2013.
[31]N. Mastronarde, V. Patel and L. Liu, “Device-to-device relay assisted cellular networks with token-based incentives,” Communication Workshop (ICCW), 2015 IEEE International Conference on, London, 2015, pp. 698-704.

QR CODE