簡易檢索 / 詳目顯示

研究生: 黃昱彰
Yu-Chang Huang
論文名稱: 為視障者設計之基於影像標籤辨識穿戴式室內定位系統
Wearable indoor locating system based on visual marker recognition for people with visual impairment
指導教授: 阮聖彰
Shanq-Jang Ruan
口試委員: 陳維美
Wei-Mei Chen
吳晉賢
Chin-Hsien Wu
林昌鴻
Chang Hong Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 66
中文關鍵詞: 室內定位穿戴式眼鏡影像標籤視障者
外文關鍵詞: indoor locating, wearable glasses, visual marker, people with visual impairment
相關次數: 點閱:355下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇論文提出一套為視障者設計的室內定位系統,並且將其實現在穿戴式眼鏡搭配手機的組合。此系統基於影像標籤辨識實現,然而視障者因為視覺障礙,他們對於尋找環境中一般的二維條碼有其困難度,因此這篇論文提出了一種特殊的彩色標籤,當這個標籤為400平方公分時,最遠可於15公尺被偵測到,此標籤辨識可在一般四核心的手機上即時運行。此外,為了改善視障者平時走路上的困難,我們使用多個超音波感測器來實現低功率的避障功能,避障功能與定位系統可以同時運作也可以只單獨啟用其中一個。為了將系統以低功率架構實現,以及避免運算過載,其中,眼鏡只負責擷取與傳送資料,這些資料包含影像與超音波感測器的數職,而手機則負責處理這些資料。我們提出的這套系統可以幫助視障者在許多生活中場所都能更加地方便與有更好的體驗,例如火車站、百貨公司等場所。


    This thesis presents an indoor locating system on a pair of wearable glasses with a mobile phone for people who are visual impairment. The proposed system is implemented by a visual marker recognition. Because people with visual impairment have difficulty searching normal 2-D barcode based markers in environments, this thesis proposed a custom color marker which is detectable in 15 m maximum when its size is 400 cm^2. The marker recognition can be processed in real-time on a quad-core mobile phone. In addition, to improve the walking experience for people with visual impairment, we use multiple micro ultrasonic sensors to achieve obstacles detection for low power. The locating system and obstacles detection can work standalone or in parallel. In order to achieve low power system architecture and avoid overloading, glasses are only responsible for obtaining and transmitting data including image sequence and ultrasonic sensors value. The mobile phone processes these data to get the location and detect obstacles. The proposed system could help people with visual impairment have better experience in many environments such as train stations, department store.

    Recommendation Form Committee Form Chinese Abstract English Abstract Acknowledgements Table of Contents List of Tables List of Figures 1 Introduction 1.1 Background 1.2 Introduction of Locating Systems 1.3 Introduction of Wearable Technology 1.4 Feature of This Work 1.5 Organization of This Thesis 2 Related Works 2.1 A Review of Visual Markers 2.1.1 AprilTag 2.1.2 Quick Response Code (QR code) 2.1.3 Target Marker 2.2 A Review of Aids for People with Visual Impairment 3 Proposed Visual Marker 3.1 Marker Design 3.2 Marker Detection 3.2.1 Segmentation 3.2.2 Intersection 3.2.3 Clustering 3.2.4 Centering 3.2.5 Matching 3.3 Marker Recognition 4 Proposed System 4.1 The Architecture of the Proposed System 4.2 The Architecture of the Wearable Device 4.2.1 Mjpeg-streamer 4.2.2 Ultrasonic sensors BLE Service 4.3 The Application of the Mobile Phone 4.3.1 RenderScript 4.3.2 Android NDK 4.3.3 Text to Speech (TTS) 5 Experimental results 5.1 Development Platforms 5.2 Experimental results 5.3 Discussion for the system 6 Conclusions References

    [1] UN Nations Convention on Rights of Persons with Disabilities, 2007.
    [2] S. Alghamdi, R. V. Schyndel and I. Khalil, “Safe trajectory estimation at a pedestrian crossing to assist visually impaired people,” 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5114-5117, Aug. 2012.
    [3] T. P. Yunck, W. G. Melbourne and C. L. Thoenton, “GPS-Based Satellite Tracking System for Precise Positioning,” IEEE Transactions on Geoscience and Remote Sensing, vol. GE-23, no. 4, pp. 450-457, Jul. 1985.
    [4] M. Pent, M. A. Spirito and E. Turco, ”Method for positioning GSM mobile stations using absolute time delay measurements,” Electronics Letters, vol. 33, no. 24, pp. 2019-2020, Nov. 1997.
    [5] C. Drane, M. Macnaughtan and C. Scott, “Positioning GSM telephones,” IEEE Communications Magazine, vol. 36, no. 4, pp. 46-54, Apr. 1998.
    [6] F. Forno, G. Malnati and G. Portelli, “Design and implementation of a Bluetooth ad hoc network for indoor positioning,” IEE Proceedings – Software, vol. 152, no. 5, pp. 223-228, Oct. 2005.
    [7] S. Zhou and J. K. Pollard, “Position measurement using Bluetooth,” IEEE Transactions on Consumer Electronics, vol. 52, no. 2, pp. 555-558, May. 2006.
    [8] T. M. Fern´andez, J. Rodas, C. J. Escudero and D. I. Iglesia, “Bluetooth Sensor Network Positioning System with Dynamic Calibration,” 4th International Symposium on Wireless Communication Systems, pp. 45-49, Oct. 2007.
    [9] S. S. Chawathe, “Low-latency indoor localization using bluetooth beacons,” 12th International IEEE Conference on Intelligent Transportation Systems, pp. 1-7, Oct. 2009.
    [10] H. Hile and G. Borriello, “Positioning and Orientation in Indoor Environments Using Camera Phones,” IEEE Computer Graphics and Applications, vol. 32, no. 4, pp. 32-39, Aug. 2008.
    [11] D. V. Opdenbosch, G. Schroth, R. Huitl, S. Hilsenbeck, A. Garcea and E. Steinbach, “Camera-based indoor positioning using scalable streaming of compressed binary image signatures,” IEEE International Conference on Image Processing (ICIP), pp. 2804-2808, Oct. 2014.
    [12] W. Sui and K. Wang, “An accurate indoor localization approach using cellphone camera,” Natural Computation (ICNC) 11th International Conference on, pp. 949-953, Aug. 2015.
    [13] J. Kim and H. Jun, “Vision-based location positioning using augmented reality for indoor navigation,” IEEE Transactions on Consumer Electronics, vol. 54, no. 3, pp. 954-962, Aug. 2008.
    [14] A. Mulloni, D. Wagner, I. Barakonyi and D. Schmalstieg, “Indoor Positioning and Navigation with Camera Phones,” IEEE Pervasive Computing, vol. 8, no. 2, pp. 22-31, Apr. 2009.
    [15] A. Hayes, “My Journey into Glass: Talking about Google Glass with stakeholders in the Glass Explorer Program.,” IEEE Consumer Electronics Magazine, vol. 5, no. 1, pp. 102-106, Jan. 2016.
    [16] A. Hayes et al., Wearable computers. Technology and Society, Toronto, Canada, 27–29 June 2013, ISBN: 978-1-4799-0929-2.
    [17] S. M. Bascon, S. L. Arroyo, P. G. Jimenez, Hilario Gomez-Moreno and Francisco Lopez-Ferreras, “Road-Sign Detection and Recognition Based on Support Vector Machines,” IEEE Transactions on Intelligent Transportation Systems, vol. 8, no. 2, pp. 264-278, Jun. 2007.
    [18] J. Greenhalgh and M. Mirmehdi, “Real-Time Detection and Recognition of Road Traffic Signs,” IEEE Transactions on Intelligent Transportation Systems, vol. 13, no. 4, pp. 1198-1506, Aug. 2012.
    [19] E. Olson, “AprilTag: A robust and flexible visual fiducial system,” Robotics and Automation (ICRA), 2011 IEEE International Conference on, pp. 3400-3407, May. 2011.
    [20] QR code.com. DENSO WAVE Inc., [Online]. Available: http://www.qrcode.com/en/index.html
    [21] O. Christen, E. Naroska, A. Micheel, and S. J. Ruan, “Target Marker: A Visual Marker for Long Distances and Detection in Realtime on Mobile Devices,” 2nd International Conference of Machine Vision and Machine Learning, Aug. 2013.
    [22] S. Bharathi, A. Ramesh and S. Vivek, “Effective navigation for visually impaired by wearable obstacle avoidance system,” International Conference on Computing, Electronics and Electrical Technologies(ICCEET), pp. 956-958, Mar. 2012
    [23] J. H. Lee, D. Kim and B. S. Shin, “A wearable guidance system with interactive user interface for persons with visual impairment,” Springer Multimedia Tools and Applications, pp. 1-22, Nov. 2014
    [24] C. M. Pun and C. F. Wong, “Image retrieval using a novel color quantization approach,” 2008 9th International Conference on Signal Processing, pp. 773–776, Oct. 2008
    [25] J. L. Bentley. Multidimensional binary search trees used for associative searching. Communications of the ACM, 18(9):509–517, 1975.
    [26] M. Li, L. Wang and Y. Hao, “Image matching based on SIFT features and kd-tree,” Computer Engineering and Technology (ICCET), 2010 2nd International, vol. 4, pp. V4-218-V4-222, Apr. 2010.
    [27] H. Kalva, “The H.264 Video Coding Standard,” IEEE MultiMedia, vol. 13, no. 4, pp. 86-90, Oct. 2006.
    [28] G. J. Sullivan, J. R. Ohm, W. J. Han and T. Wiegand, “Overview of the High Efficiency Video Coding (HEVC) Standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1649-4668, Sep. 2012.
    [29] RenderScript. Google Inc., [Online]. Available: https://developer.android.com/guide/topics/renderscript/compute.html
    [30] Android NDK. Google Inc., [Online]. Available: https://developer.android.com/ndk/index.html

    QR CODE