簡易檢索 / 詳目顯示

研究生: 許銘哲
MING-CHE HSU
論文名稱: IEEE 802.11s MDA在多通道環境下以權重調整為基礎之排程方案之研究
Study on IEEE 802.11s MDA Reservation Mechanism for Weighted Adjustment Scheduling Algorithm in Multi-channel for Wireless Mesh Network
指導教授: 黎碧煌
Bih-Hwang Lee
口試委員: 陳俊良
Jiann-Liang Chen
吳傳嘉
Chwan-Chia Wu
陳漢宗
Hann-Tzong Chern,
馮輝文
Huei-Wen Ferng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 63
中文關鍵詞: 802.11sMDA多通道多點跳躍TTL無線網狀區域網路
外文關鍵詞: 802.11s, MDA, multi-channel, multi-hop, TTL, Mesh LAN
相關次數: 點閱:310下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無線網狀區域網路是由一些支援網狀服務(Mesh service)的節點所組成的通訊網路。在IEEE802.11s草案中,除了導入網狀網路架構外,亦加入以預約為基礎的存取機制,稱為MDA(Mesh deterministic access)。MDA能讓節點以較少的競爭與碰撞來進行媒體的存取。而在之前的研究中,有提出可以讓MDA運行在多通道環境下的機制,稱之為Multi-channel MDA(MMDA)。而MMDA相較與原本的MDA確實有效提升系統的效能。之後亦有研究提出當MMDA在高負載的情況下,各通道之間的傳輸區間(Data Transmission Period)都已經被預約飽和時,則可以動態的調整競爭區間,使得傳輸區間長度變長,來預約到更多的MDAOP(Mesh deterministic access transmission opportunities),以提高系統的效能。
    在多點跳躍的網路環境下,各個網狀節點的佇列皆是以先來先服務的方式在傳遞資料。因此高Hop-count的資料在轉送的過程中,往往是位於佇列較後方的位置。所以在系統負載較重時,高Hop-count資料傳送的機會就較少,因此被系統丟棄的機率就會相對提高。加上高Hop-count的資料再重新傳送時的成本也會比低Hop-count要來的高。這樣就會造成網路資源的浪費及不公平。
    為了解決上述的問題,本論文在MMDA網狀網路的架構下,提出了一個動態調整資料在佇列的排序方式。本論文考慮了資料本身的Time-to-live(TTL)以及MeshRetryTimeout來做為調整的因素。使得高Hop-count的資料在佇列中能有較高的傳送優先權,以減少資料被丟棄的機會,來提升高Hop-count資料的傳輸效能。相對的減少一些低Hop-count的資料產能,以取得系統在各個Hop-count之間在產能上的平衡。


    A wireless mesh LAN is a communications network made up of radio nodes that support Mesh service. In IEEE 802.11s draft, not only the Mesh network topology be introduced, but also a new reservation based MAC access scheme, MDA, be introduced. Nodes that support MDA can access wireless medium with lower collision probability. In a previous study, it was suggested so that MDA can operate on multi-channel environment. Compared with the MDA, MMDA does effectively enhance the system performance. In addition, there has a research study on MMDA in high loading situation. The data transmission period has been reserved to the saturation, and it can dynamically allocate Contention Period ratio to increase date Transmission Period. So it helps to reserved more MDAOP to improve system performance.
    However, in multi-hop network environment, each mesh nodes transmission data are first-in-first-out sorting mechanism. Thus, when the high hop-count data is in the forwarding process, it’s also arranged in a queue behind the position. When the network load becomes heavy, high hop-count of transmission opportunities will be reduced. Hence, discard probability will improve. Besides, the high hop-count data re-transmission cost is also higher than the low hop-count. This result will cause the waste of network resources and unfairness. In order to solve the above problems, we propose a dynamic adjustment of the sorting queue. The method considers data Time-to-live (TTL), and MeshRetryTimeout to do the adjustment factors. This thesis hopes to increase the transmission performance of high hop-count to achieve balance of the network system.

    摘要 iv Abstract v 誌謝 vi 目錄 vii 圖表索引 x 第一章 緒論 1 1.1 簡介 1 1.2 研究動機與目的 2 1.3 章節概要 4 第二章 IEEE 802.11s標準概述 5 2.1 IEEE 802.11S標準簡介 5 2.1.1 網路拓樸 5 2.1.2 MAC訊框結構 8 2.2 MDA預約機制概述 9 2.2.1 MDA運作機制 10 2.2.2 MDAOP建立流程 10 2.2.3預約訊框格式 12 2.3 相關研究 15 2.3.1 NMST 16 2.3.2 四向交握機制 18 2.3.3 動態分配競爭區間比例機制 20 2.3.4 Back-off Time 變更機制 21 第三章 動態調整佇列排程機制介紹 24 3.1 問題描述 24 3.2 研究方法 25 3.2.1 Time-To-Live與MeshRetryTimeout之介紹 25 3.2.2 動態調整佇列排程機制之簡介 28 3.2.3 動態調整佇列排程機制之範例 31 第四章 系統模擬與結果 35 4.1 模擬環境與參數 35 4.2 效能評估項目 42 4.2.1 平均節點產能(average throughput) 42 4.2.2 平均節點佇列等待時間(average waiting time) 43 4.2.2 平均節點封包丟棄率(average packet drop ratio) 43 4.3 結果分析與比較 44 4.3.1 系統在各個負載時之總產能 44 4.3.2 系統在一般負載時之平均節點產能分析與比較 45 4.3.3 系統在一般負載時之平均節點佇列等待時間分析與比較 47 4.3.4 系統在一般負載時之平均節點封包丟棄率分析與比較 48 4.3.5 系統在高負載時之平均節點產能分析與比較 50 4.3.6 系統在高負載時之平均節點佇列等待時間分析與比較 51 4.3.7 系統在高負載時之平均節點封包丟棄率分析與比較 52 4.3.8 系統在重負載時之平均節點產能分析與比較 54 4.3.9 系統在重負載時之平均節點佇列等待時間分析與比較 55 4.3.10 系統在重負載時之平均節點封包丟棄率分析與比較 56 第五章 結論及未來研究 58 5.1 結論 58 5.2 未來研究 59 參考文獻 60 作者簡介 63

    [1] IEEE Working Group, “Standard for Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” IEEE Std 802.11, pp. 1-1184, 2007.
    [2] I. F. Akyildiz and W. Xudong, “A Survey on Wireless Mesh Networks,” Communications Magazine, IEEE, Vol. 43, pp. 23-30, 2005.
    [3] R. Bruno and M. Contia E. Gregori, “Mesh networks: Commodity Multihop Ad hoc Networks,” Communications Magazine, IEEE, Vol. 43, pp. 123-131, 2005.
    [4] G. R. Hiertz, D. Denteneer, S. Max, R. Taori, J. Cardona, L. Berlemann, B. Walke, “IEEE 802.11S: THE WLAN MESH STANDARD,” IEEE Wireless Communications, Vol. pp. 104-111, 2010.
    [5] IEEE Working Group, “IEEE Draft STANDARD for Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment 10: Mesh Networking,” IEEE Unapproved Draft Std P802.11s/D3.0, March 2009.
    [6] G. R. Hiertz, S. Max, T. Junge, D. Denteneert, and L. Berlemann, “IEEE 802.11s - Mesh Deterministic Access,” in: Proc. Wireless Conference, 2008. EW 2008. 14th European, pp. 1-8, 2008.
    [7] G. R. Hiertz, S. Max, Z. Rui, D. Denteneer, and L. Berlemann, “Principles of IEEE 802.11s,” in: Proc. Computer Communications and Networks, pp. 1002-1007.
    [8] G. R. Hiertz, S. Max, Z. Yunpeng, T. Junge, and D. Denteneer, “IEEE 802.11s MAC Fundamentals,” in: Proc. Mobile Adhoc and Sensor Systems, 2007. MASS 2007. IEEE Internatonal Conference on, pp. 1-8, 2007.
    [9] G. Zilong, L. Bin, H. Xuehua, and H. Lianfen, “Channel Cognitive Multi-channel MAC protocol in Wireless Mesh Network,” in: Proc. Communications, Circuits and Systems, pp. 89-93, 2008.
    [10] C. Cordeiro and K. Challapali, “C-MAC: A Cognitive MAC Protocol for Multi-Channel Wireless Networks,” in: Proc. New Frontiers in Dynamic Spectrum Access Networks, pp. 147-157, 2007.
    [11] J. R. Gallardo, D. Makrakis, and H. T. Mouftah, “MARE: An Efficient Reservation-Based MAC Protocol for IEEE 802.11s Mesh Networks,” in: Proc. Advances in Mesh Networks, pp. 97-102, 2009.
    [12] M. Benveniste and Z. Tao, “Performance Evaluation of a Medium Access Control Protocol for IEEE 802.11s Mesh Networks,” in: Proc. Sarnoff Symposium, 2006 IEEE, pp. 1-5, 2006.
    [13] K. Ghaboosi, M. Latva-aho, and X. Yang, “A Distributed Multi-channel Cognitive MAC Protocol for IEEE 802.11s Wireless Mesh Networks,” in: Proc. Cognitive Radio Oriented Wireless Networks and Communications, pp. 1-8, 2008.
    [14] CHEN, H. C., “Study on IEEE 802.11s MDA Reservation Mechanism for Multi-channel Wireless Mesh Network,” Master dissertation, National Taiwan University of Science and Technology, Taipei, Taiwan.
    [15] HUANG, P.H., “Study on IEEE 802.11s MDA Reservation Mechanism for Dynamically Allocate Contention Period Ratio in Multi-channel Wireless Mesh Network,” Master dissertation, National Taiwan University of Science and Technology, Taipei, Taiwan. 2011.

    QR CODE