簡易檢索 / 詳目顯示

研究生: 黃子建
Tzu-Chien Huang
論文名稱: N2O電漿後處理對奈米碳管場發射特性改善之研究
Effects of N2O Plasma Post-treatment on the Performance Improvement of Field Emission Property for Carbon Nanotubes
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 顏文正
Vicent Yen
李志堅
C. C. Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 121
中文關鍵詞: 奈米碳管場發射
外文關鍵詞: corbon nanotube, field emission
相關次數: 點閱:430下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

自從奈米碳管(carbon nanotubes)於1991年被發現後,引起了各界廣大的興趣,因為奈米碳管獨特的物理性質和許多潛在應用方面。奈米碳管因為具有極高的高寬比、小的曲率半徑、優異的化學穩定性、和很高的導電性,這些特性是之所以奈米碳管目前最被看好應用在場發射電子源上的原因。
合成奈米碳管有許多的製程方法,不過以化學沈積方法合成奈米碳管方法最適合在場發射應用上,其使用化學沈積法來合成奈米碳管的優點有較高純度、高產率、可以較能控制奈米碳管的成長。本論文第一部份分別利用熱化學沈積系統(Thermal Chemical Vapor Deposition)和微波電漿輔助化學沈積系統(Microwave Plasma enhancement Chemical Vapor Deposition)藉由改變合成奈米碳管的製程參數來探討由此兩種化學沈積系統所合成奈米碳管的形態之變化,並討論其形態和場發射特性之關連。
使用化學沈積系統合成奈米碳管,讓人詬病的地方就是常會有非晶碳(amorphous carbon )附著在碳管的管壁上,此非晶碳會使電子從管壁發射受到阻礙。本論文第二部份為利用N2O電漿,藉由物理和化學的方式來改善此問題。由實驗結果證實在適當的條件之下,使用N2O電漿不僅可以改善非晶碳附著的問題,還可以經過化學的反應來改變奈米碳管的結構,使得場發射特性有所改善。奈米碳管起始電場可以由2.5 V/μm降至1.7 V/μm和3.15 V/μm降至2.7 V/μm,而場發射電流密度可以由100 μA/cm2提高到360 μA/cm2和200 μA/cm2提高到889 μA/cm2,分別利用熱化學沈積系統和微波電漿輔助化學沈積系統合成。


Since carbon nanotube was discovered in 1991, it have attracted considerate interest because of their unique physical property and many potential applications. This is the reason why carbon nanotubes was thought as electron field emission source candidate is their high aspect ratio, small tip radii of curvature, excellent chemical stability, and high conductivity.
There are many methods for synthesizing carbon nanotubes. CVD methods is more suitable to synthesize carbon nanotubes for application in field emission source because it has the advantages such as high purity, high yield, and controlled growth. The first section in this thesis is synthesizing carbon nanotubes by Thermal Chemical Vapor Deposition and Microwave Plasma Enhancement Chemical Vapor Deposition by varying recipe of the process and subsequently investigate the relationship between the field emission property is relative to the change of CNTs` structure and morphology.
There are many amorphous carbon adsorb on the wall of carbon nanotubes synthesizing by CVD methods. The amorphous carbon will interfere in electron emission. The second section in this thesis is using N2O plasma to solve this problem. The results show that the field emission properties can be upgraded with proper high density plasma treatment condition because of N2O plasma not only solve amorphous carbon problem but also change the structure of the carbon nanotubes with chemical reaction. The turn on electric field decrease from 2.5 V/μm to 1.7 V/μm and 3.15 V/μm to 2.7 V/μm 、current density increase from 100 μA/cm2 to 360 μA/cm2 and 200 μA/cm2 to 889 μA/cm2 synthesizing by Thermal CVD and MPCVD, respectively.

摘要(中文) I 摘要(英文) III 致謝 V 目錄 VI 表索引 IX 圖索引 X 第一章 緒論 1 1.1 前言 1 1.2 奈米碳管之結構 1 1.3 奈米碳管之生長機制 2 1.4 奈米碳管之製程方法 3 1.4.1 電弧放電法 4 1.4.2 雷射蒸發法 4 1.4.3 催化劑化學氣相沈積法 5 1.4.4 微波輔助化學氣象沈積法 5 1.5 奈米碳管之性質 6 1.5.1 機械性質 6 1.5.2 熱傳導性 7 1.5.3 電特性 8 1.6 奈米碳管之應用 9 1.6.1 場發射顯示器 9 1.6.2 場效電晶體 10 1.6.3 奈米導線 10 1.6.4 強化複合材料 10 1.6.5 儲氫材料 10 1.6.6 顯微鏡的掃瞄探針 11 1.7 場發射理論 11 第二章 實驗方法與步驟 15 2.1 前言 15 2.2 製程流程 15 2.3 機台介紹 18 2.4 實驗參數設計 21 第三章 實驗結果與討論 22 3.1 使用MPCVD成長CNTs 22 3.1.1 不同前處理時間之影響 22 3.1.2 不同成長時間之影響 23 3.1.3 不同碳源比例之影響 25 3.1.4 不同製程溫度之影響 26 3.2 使用Thermal CVD成長CNTs 27 3.2.1 不同前處理時間之影響 28 3.2.2 不同成長時間之影響 29 3.2.3 不同製程溫度之影響 30 3.3 電漿後處理之影響 31 3.3.1 針對MPCVD成長之CNTs 31 3.3.2 針對Thermal CVD之成長CNTs 32 第四章 結論與展望 35 4.1 結論 35 4.2 未來展望 35 參考文獻 117

1.S. Iijima, Nature 354, 56, 1991.
2.M. S. Dresselhaus, G. Dresselhaus, and R. Saito, “Physics of carbon
nanotubes”, Carbon, 33, 883, 1995.
3.M. J. Yacaman, M. M. Yoshida, L. Rendon, J. G. Santiesteban, Appl.
Phys. Lett. 62, 202, 1993.
4.Vladimir I. Merkulov, 2001, “Shaping carbon nanostructures by controlling
the synthesis process”, Applied physics letter vol 79, number 8, August 20.
5.Vladimir I. Merkulov, 2001, “Alignment mechanism of carbon nanofibers
produced by plasma-enhanced chemical-vapor deposition”, Applied physics
letter vol 79, number 18. 29 October.
6.CRC Press, Boca Raton, “Carbon nanotubes – preparation and properties”,
ed. By Thomas W. Ebbesen, New York, London, Tokyo, 1997.
7.“Carbon Nanotubes and Related Structures–new materials for twenty-first
century”, ed. By Peter J. F. Harris, Cambridge University Press, 1999.
8.A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H.
Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. Scuseria, D. Tomanek, J.
E. Fischer, R. E. Smalley, Science 273, 483, 1996.
9.T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D. T. Colbert, R. E.
Smalley, J. Phys. Chem. 99, 10694, 1995.
10.T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, Chem. Phys.
Lett. 243, 49, 1995.
11.C. Journet, P. Bernier, Appl. Phys. A, 67, 1, 1998.
12.M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Nature 381, pp.678, 1996.
13.Erik T.Thostenson et al., “ Advances in the science and technology of
carbon nanotubes and their composites : a review ”, Composites Science
Technology 61, pp.1899-1912, 2001.
14.C.F. Cornwell, L.T. Wille, “ Simulation of the elastic response of
single-walled carbon nanotube ”, Computational Materials Science 10, pp.42- 45, 1998.
15.C.F. Cornwell, L.T. Wille, “ Elastic properties of single-walled carbon
nanotubes in compression ”, Solid State Commun. 101, No.8, pp.555-558,
1997.
16.R. S. Ruoff et al., “ Mechanical and thermal properties of carbon
nanotubes ”, Carbon 33, No.7, pp.925-930, 1995.
17.Shigeo Maruyama, “ A molecular dynamics simulation of heat conduction
in finite length SWNTs ”, Physica B 323, pp.193-195, 2002.
18.J. Hone et al., “ Thermal conductivity of single-walled carbon
nanotubes ”, Synthetic Metals 103, pp.2498, 1999.
19.M. S. Dresselhaus, G. Dresselhauszy, P. C. Eklund, Science of Fullerenes
and CarbonNanotubes (Academic, San Diego 1996)
20.Jae-Hee Han, Su Hong Lee, A.S. Berdinsky, Yong Weon Kim, Ji-Beom Yoo, Chong- Yun Park, Jin Ju Choi, Taewon Jung, In Taek Han, Jong Min Kim, “Effects
of various post-treatments on carbon nanotube films for reliable field
emission”, Diamond & Related Materials 14, 1891 – 1896, 2005.
21.A. Felten, C. Bittencourt, and J. J. Pireaux, G. Van Lier and J. C.
Charlier, “Radio-frequency plasma functionalization of carbon nanotubes
surface O2,NH3, and CF4 treatments”, JOURNAL OF APPLIED PHYSICS 98,
074308, 2005.
22.Chuan-Ping JUAN, Chun-Chien TSAI, Kuei-Hsien CHEN, Li-Chyong CHEN and Huang- Chung CHENG, “Effects of High-Density Oxygen Plasma Posttreatment on
Field Emission Propertiesof Carbon Nanotube Field-Emission Displays”,
Japanese Journal of Applied Physics Vol. 44, No. 11, pp. 8231–8236, 2005.
23.Ke Yu, Ziqiang Zhu, Yongsheng Zhang, Qiong Li, Weiming Wang, Laiqiang Luo,
Xianwen Yu, Honglei Ma, Zhenwen Li, Tao Feng“Change of surface morphology
and field emission property of carbon anotube films treatd using a hydrogen
plasma”, Applied Surface Science 225, 380-388, 2004.
24.Bingyong Yan, Kaiyou Qian, Yafei Zhang, Dong Xu,“Effects of argon plasma
treating on surface morphology and gas ionization property of carbon
nanotubes”, Physica E 28 88-92, 2005.
25.K. Murakami, W. Rochanachirapar, N.Yamasaki, S. Abo, F. Wakaya, M. takai,
A.Hosono and S. Okuda, “Laser irradiation to CNT cathodes for large
diagonal FEDs”, IDW 2004
26.Chia-Hung Li, Han-Chi Liu, Shih-Chun Tseng, Yi-Ping Lin, Shih-Pu Chen, Jung- Yu Li, Kwang-hsiung Wu, Jenh-Yih Juang, “Enhancement of the field
emission properties of low-temperature-growth multi-wall carbon nanotubes
by KrF excimer laser irradiation post-treatment”, Diamond & Related
Materials 15 2010-2014, 2006.
27.Y. Gotoh, Y. Kawamura, K. Ishisu, H. Tsuji, and J. Ishikawa, “Measurement
of field emission characteristics of laser irradiated carbon nanotubes”,
IDW 2004.
28.J. Yu, Q. Zhang, J. Ahn, S.F. Yoon, Resli, Y.J. Li, B. Gan, K. Chew, K.H.
Tan, “Field emission from patterned carbon nanotube emitters produced by
microwave plasma chemical vapor deposition” Dimand and Related Materials
10 2157-2160, 2001.
29.Cheol Jin Lee, Jeunghee Park,“Growth and structure of carbon nanotubes
produced by thermal chemical vapor deposition”, Carbon 39 1891-1896 2001.
30.S. K. Patra and G. Mohan Rao,“Field emission current saturation of aligned
carbon nanotube-Effect of density and aspect ratio”, Journal of APPLIED
PHYSICS 100, 024319, 2006.
31.Wei Feng, Hisashi Araki, Masanori Ozaki and Kastsumi Yoshino,“Field
emission property of the nonaligned multiwalled carbon nanotube films with
different length”, Japanese Journal of Applied Physics Vol. 44, No.7,
pp. L253-L255, 2005.
32.Sheng-Yuan Chen, Juh-Tzeng Lue,“Temperature dependence of interface
barrier height change as implicated by field emission studies of aligned-
mutiwall carbon nanotubes”, Physics Letters A 309 114-120, 2003.
33.F.H. Kaatz, M.P. Siegal, D.L. Overmyer, P.P. Provencio, J.L. Jackson,
“Diameter control and emission properties of carbon nanotubes grown using
chemical vapor deposition”, Material Science and Engineering C 23 141-146,
2003.
34.Cheol Jin Lee, Jeunghee Park, Yoon Huh, Jeong Yong Lee,“Temperature effect
on the growth of carbon nanotubes using thermal chemical vapor
deposition”, Chemical Physics Letters 343 33-38, 2001.
35.Takashi Ikuno, Shin-ichi Honda, Hiroshi Furuta, Katsunori, Aoki, Takashi
Hirao, Kenjiro Oura and Mitsuhiro Katayama, “Correlation between Field
Electron Emission and Structural Properties in Randomly and Vertically
Oriented Carbon Nanotube Films”, Japanese Journal of Applied Physics Vol.
44, No. 4A, pp. 1655-1660, 2005.
36.Vijaya Kamar Kayastha, Benjamin UImen and Yoke Khin Yap, “Effect of
graghitic order on field emission stability of carbon nanotubes ”,
Nanotechnology 18 035206(app), 2007.
37.Sung Hoon Lim, Kyu Chang Park, Jong Hyun Moon, Byung Kwon Choo, Hyun Sik
Yoon, Didier Pribat and Jin Jang “ Enhanced Electron Emission from the CNT
Grown with a SiNx capping layer ”, IDW 2004.
38.Hyun Young Jung, Sung Mi Jung, Geun Hoi Gu, and Jung Sang Suh, “Anodic
aluminum oxide membrane bonded on a silicon wafer for carbon nanotube field
emitter arrays”, APPLIED PHYSICS LETTERS 89, 013121, 2006.
39.Hung-Chung Cheng, Wei-Kai Hong, Fu-Gow Tarntair, Kuo-Ji Cheng, Jia-Bin Lin,
Kuei-Hsien Chen, and Li-Chiung Chen, “Integration of Thin Film Transistor
Controlled Carbon Nanotubes for Field Emission Devices”, Electrochemical
and Solid-State Letters, 4(4) H5-H7, 2001.

無法下載圖示 全文公開日期 2012/07/18 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE