簡易檢索 / 詳目顯示

研究生: 李義政
Yi-Jheng Li
論文名稱: 基於Windows CE.NET環境之感應馬達速度控制系統之研製
Design and Implementation of Induction Motor Speed Control Systems in Windows CE.NET Environment
指導教授: 王文智
Wen-Jieh Wang
口試委員: 姚立德
Li-De Yao
鍾鴻源
Hung-Yuan Chung
蘇順豐
Shun-Feng Su
黃仲欽
Chung-Chien Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 133
中文關鍵詞: 感應馬達速度控制系統滑動模式控制器模糊控制器重覆控制器
外文關鍵詞: Windows CE.NET, sliding controller, fuzzy controller, repetitive controller
相關次數: 點閱:346下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出基於Windows CE.NET環境之感應馬達速度控制系統之研製,首先,根據間接磁通導向控制法,然後使用PI控制法則、滑動模式控制法則、模糊控制法則,重覆控制法則等控制法則,設計各種速度控制器,並利用類比/數位轉換器及數位/類比轉換器作為訊號傳輸介面,以控制感應馬達之轉速。最後,在個人電腦為控制主體之架構下,以微軟公司
    提供的EVC(Embedded Visual C/C++)和PB(Platform Builder)開發工具發展驅動程式及控制程式,並應用在Windows CE.NET作業系統中。
    經由實驗結果顯示,雖然PI控制器設計簡單,但易受到雜訊干擾而產生穩態誤差;滑動模式控制器可以強化系統的穩定條件進而消除穩態誤差,但易受到雜訊的干擾而產生顫震的現象;模糊控制器則基於適應和非線性的控制而不易受到雜訊干擾,且能比滑動模式控制器及PI控制器有較短的安定時間。
    重覆控制器能改善在原控制系統上的週期性干擾,重覆控制器與PI控制器的組合能強化原PI控制器的穩定度;重覆控制器與滑動模式控制器的組合能降低週期性雜訊的干擾而減少顫震的現象;重覆控制器與模糊控制器的組合能加強抗週期性雜訊的性能。


    An induction motor speed control system in Windows CE.NET environment is developed in this paper. First, decoupling of the motor torque and rotor flux amplitude is based on the indirect vector control method. Then, PI controller, sliding mode controller, fuzzy controller, and repetitive controller are designed to control the speed of the induction motor. Finally, on the base of PC control structure, we use EVC( Embedded Visual C/C++) and PB(Platform Builder) tool that Microsoft provided to develop driver and control program on Windows CE.NET operation system .
    Experimental results show that PI controller is designed easily, but it is sensitive to disturbance, which produce the steady-state error. Sliding mode control can strengthen the steady-sate condition, but it is sensitive to the disturbance, which produce the dither. Fuzzy control is basically an adaptive and nonlinear control, which is insensitive to the disturbance, and the settling time of fuzzy controller is shorter than that of PI controller and sliding mode controller.
    Repetitive controller can track periodic reference commands and attenuate periodic disturbances of the control system. The combinations of repetitive controller and PI controller can improve the stability of PI controller. The combinations of repetitive controller and sliding mode controller can reduce the periodic disturbance, and decrease the dither. The combinations of repetitive controller and fuzzy controller can improve the capability of periodic disturbance rejection.

    目 錄 中文摘要 英文摘要 誌謝 目錄 圖表索引 第一章 緒論  1.1 研究動機 1.2 相關文獻回顧 1.3 研究目的及大綱 第二章 感應馬達之磁場導向控制架構 2.1 前言 2.2 感應馬達之電氣方程式 2.2.1 座標軸轉換 2.2.2 兩軸法 2.3 間接式轉子磁通導向控制架構 第三章 速度控制器之設計 3.1 PI速度控制器 3.2 滑動模式速度控制器 3.2.1 前言 3.2.2 滑動模式速度控制器設計 3.3 模糊速度控制器 3.3.1 前言 3.3.2 模糊速度控制器設計 3.4 重覆控制器 3.4.1 前言 3.4.2 重覆速度控制器設計 第四章 實驗結果與討論 4.1 實驗系統 4.2 系統硬體架構 4.2.1 機械負載系統 4.2.2 電流控制型電壓源脈波寬度調變變頻器 4.2.3 時間延遲及互鎖電路 4.2.4 輸入輸出介面卡 4.3 程式架構 4.3.1 程式發展流程 4.3.2 製作Windows CE作業系統映像檔 4.3.3 上傳Windows CE作業系統映像檔 4.4 實驗結果 4.4.1 PI速度控制器之實驗結果 4.4.2 滑動模式速度控制器之實驗結果 4.4.3 模糊速度控制器之實驗結果 4.4.4 重覆控制器與PI速度控制器組合之實驗結果 4.4.5 重覆控制器與滑動模式速度控制器組合之實驗結果 4.4.6 重覆控制器與模糊速度控制器組合之實驗結果 4.5 討論 第五章 結論及未來研究方向 5.1 結論 5.2 未來研究方向 參考文獻 附錄A 三相感應馬達之額定規格與參數 附錄B 控制程式之部份節錄 附錄C Windows CE.NET系統架構 I 前言 II WindowsCE.NET作業系統特性 II.I 記憶體架構 II.II 排程 II.III即時能力 II.IV 設備驅動程式 II.V 進階電源管理 III Windows CE.NET作業系統架構 III.I 階層式的架構 III.II Windows CE.NET的模組架構 IV Windows CE.NET作業系統機制 IV.I Windows CE.NET的中斷架構 IV.II 陷阱排程 V Windows CE.NET作業系統支援 V.I 統統配置模組化 V.II 系統工具 作者簡介

    參考文獻

    [1] K. Hasse, “Zur Dynamik Drehzahigeregelter Antriebe mit tromrichtegespeisten Asynchron Kurzschluβ laüfer Maschinen,” Ph.D dissertation, Tech. Hochschule. Darmstadt , 1969.

    [2] F. Blaschke, “A New Method for The Structure Decoupling of AC Induction Machines,” 2nd IFAC on Multivariable Tech. Control Syst., Pt. 3, pp. 11-13, 1971.

    [3] P. Vas, Vector control of AC machines, Clarendon Press, 1990.

    [4] C. M. Ong, Dynamic Simulation of Electric Machinery, New Jersey Prentice-Hall, 1998.

    [5] P. C. Krause, Analysis of Electric Machinery, New York McGraw Hill, 1987.

    [6] B. K. BOSE, “Modern Power Electronics and AC Drives”, Prentice Hall PTR 2002.

    [7] R. D. Lorenz, T. A. and D. W. Novotny, “Motion Control with Induction Motors,” Proceeding of the IEEE, Vol. 82, pp. 1215-1240, 1994.

    [8] A. D. Luca and G. Ulivi, “ Design of an Exact Nonlinear Controller for Induction Motors,” IEEE Trans. on Automatic Control, Vol. 34,No. 12, pp. 1304-1307, 1989.

    [9] D. I. Kim, I. J. Ha and M. S. Ko, “Control of Induction Motors for Both High Dynamic Performance and High Power Efficiency,” IEEE Trans. on Industrial Electronics, Vol. 39, No. 4, pp. 323-333, 1992.

    [10] M. Bodson, J. Chiasson and R. T. Novotnak, “High-Performance Induction Motor Control Via Input-Output Linearization,” IEEE Control System Magazine, pp. 25-33, 1994.

    [11] J. Y. Hung, R. M. Nelms and P. B. Stevenson, “An Ouput Feedback Sliding Mode Speed Regulator for DC Drives,” IEEE Trans, on Ind. Appl, Vol. 30, No. 3, pp. 691-698, 1994.

    [12] C. M. Kwan, “Robust Control of Induction Motors,” IEEE Conf. on Decision and Control. Vol. 2, pp. 1107-1111, 1994.

    [13] F. M. F. Sa, Z. M. A.Peixoto, P. F. Seixas and B. R. Menezes, “Position and Speed Sling Mode Control of an Interior Permanent Magnet Synchronous Motor,” IEEE CON, Vol. 2, pp. 1017-1022, 1995.

    [14] V. I. Utkin, “Variable Structure Systems with Sliding Model,” IEEE Trans. on Automatic Control, Vol. AC-22, No. 2, pp. 212-220, 1977.

    [15] S. Z. Sarptuk, Y. Istefanopulos and O. Kaynak, “On The Stability of Discrete-Time Sliding Mode Control for Constrained Robots,” Automatic, Vol. 31, No. 3, pp. 483-488, 1995.

    [16] K. Furuta, “Sliding Mode Control Of A Discrete System,” Systems & Control Letters, pp, 145-152, 1990.

    [17] C. Y. Chan, “Servo-System with Discrete-Variable Structure Control & Control Letters,” pp. 321-325, 1991.

    [18] B. A. Francis and W. M. Wonham, “The internal model principle of control theory,” Automatic, v. 12, pp. 457-465, May 1976.

    [19] M. -C. Tsai, G. Anwar and M. Tomizuka, “Discrete time repetitive control for robot manipulators,” Robotics and Automation, 1988. Proceedings., 1988 IEEE nternational Conference on vol.3 , pp. 1341-134, April 1988.

    [20] C. Kempf, W. Messner, M. Tomizuka and R. Horowitz, “Comparison of four discrete-time repetitive control algorithms,” IEEE Control Systems Magazine, vol. 13, pp. 48-54, Dec 1993.

    [21] T.Inous, “Practical repetitive control system design,” in Proceedings of the 29th Conference on Decision and Control, pp. 1673-1678, 1990.

    [22] K. Zhang, Y. Kang, J. Xiong and J. Chen, “Direct repetitive control of SPWM inverter for UPS purpose,” IEEE Trans. Power Electronics, vol. 18, pp. 784-792, May 2003.

    [23] C. Rech and J. R. Pinheiro, “New Repetitive Control System of PWM Inverters With Improved Dynamic Performance under Non-periodic Disturbances,” IEEE 35th Annual, Power Electronics Specialists Conference, Vol. 1, pp 54 - 60, June 2004.

    [24] T. Takagi and M. Sugeno, “Fuzzy Identification of a System And Its Applications to Modeling and Control,” IEEE Trans. Syst. Man and Cybern, vol. 1 , pp. 116-132, Jan./Feb. 1985.

    [25] I. Miki, N. Nagai, S. Nishigama, and T. Yamada, “Vector Control of Induction Motor with Fuzzy PI Controller,” IEEE IAS Annual, Meet. Conf. Rec, pp. 342-346, 1991.

    [26] Y. F. Li and C. Lau, “Development of Fuzzy Algorithms for Servo Systems,” IEEE Control Systems Magazine, pp. 65-72, April 1989.

    [27] G. C. D Sousa, B. K.Bose, and J. G. Cleland, “Fuzzy Logic Base On-Line Efficiency Optimization Control of an Indirect Vector Controlled Induction Motor Drive,”IEEE Trans. of Ind. Elec, vol. 42, pp. 192-198, Apr, 1995.

    [28] Wu-Sung Yau and Mi-Ching Tsai, “ Repetitive Control Design for Linear Servo Systems,” IEEE Mechanical Engineering Dept, vol. 5, pp. 3728-3732, June 1999.

    [29] K. Zhou and D. Wang, “Digital Repetitive Controlled Three-Phase PWM Rectifier”, IEEE Tran, Vol. 18, No. 1, pp. 309-319, January 2003.

    [30] W. J. Wang and C. C. Wang, “A New Composite Adaptive Speed Controller for Induction Motor based on Feedback Linearization,” IEEE Trans. on Energy Conversion, Vol. 13, No. 1, pp. 1-6 , 1998.

    [31] W. J. Wang and C. C. Wang, “Speed and Efficiency Control of an Induction Motor with Input-Output Linearization,” IEEE Trans. on Energy Conversion, Vol. 14, No. 3, pp. 373-378, 1999.

    [32] 仲成儀器股份有限公司,電動機控制理論與實習,全華科技圖書出版,民國八九年九月。

    [33] 劉昌煥,交流電機控制,東華出版,民國90年9月。

    [34] 恆逸資訊 楊先民,Pocket PC 程式設計自學手冊,學貫行銷出版,民國九一年十月。

    [35] James Y. Wilson and Aspi. Havewala 著,陳峰棋/英瑞得資訊譯,Win CE IA平台超強建構-Win CE 裝置驅動程式完全開發,台灣陪生教育出版,2002年1月。

    [36]台灣微軟MSDN-Mobile and Embedded Development,
    http://msdn.microsoft.com/library/default.asp。

    [37] Jungo Ltd, WinDriver Support, http://www.jungo.com/support/.

    [38]華人WINCE論壇,http://www.wince.com.tw。

    QR CODE