簡易檢索 / 詳目顯示

研究生: 蔡芳昌
Fang-chang Tsai
論文名稱: 活性塑膠包裝材料的製備與研究
Preparation and Investigation of Active plastic Package Materials
指導教授: 葉正濤
Jen-taut Yeh
口試委員: 張豐志
Feng-chih Chang
陳幹男
Kan-nan Chen
黃繼遠
Chi-yuan Huang
芮祥鵬
Syang-peng Rwei
許應舉
Ying-gev Hsu
黃國賢
Kuo-shien Huang
賴顯松
Sang-song Lai
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 218
中文關鍵詞: 改質聚醯胺乙烯乙烯醇共聚物奈米尼龍掺混物抗壞血酸鐵粉改性鐵粉氧氣滲透速率脫氧性質
外文關鍵詞: modified polyamide, ethylene vinyl alcohol copolymer, nylon 6 clay, ascorbic acid, iron, modified iron, oxygen permeation rates, oxygen depletion properties
相關次數: 點閱:288下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是針對聚丙烯(polypropylene, PP),聚丙烯/改質聚醯胺(modified polyamide, MPA)/乙烯乙烯醇共聚物(ethylene vinyl alcohol copolymer, EVOH)(PP/MPAEVOH)摻混物製備與對汽油阻隔性質進行研究; 亦選取奈米尼龍掺混物(nylon 6 clay, NYC)搭配MPA掺混製備改質聚醯胺奈米尼龍掺混物(MPANYC)塑膠並對其氧氣滲透阻隔性能進行研究。 另一方面,為了改善現今包裝材料產品保存包裝內容的時效,採用抗壞血酸(ascorbic acid, Vc)、鐵粉(iron, Fe)與改性鐵粉(modified iron, MFe)鐵粉分別作為主要的脫氧劑成分摻混加入具較高透氧與透水率的乙烯-醋酸乙烯酯共聚合物(Ethylene vinyl acetate,EVA)塑膠中製備成活性塑膠包裝材料並研究其脫氧性能。
    結果發現純PP瓶阻隔汽油滲透之效果非常差,但在PP內摻混10wt%的較適化MPA、MPAEVOH配方進行吹瓶後, PP/MPA吹瓶樣品之汽油阻隔滲透速率已分別較原PP 與PP/EVOH PP吹瓶樣品慢了10.1及1.2倍。 其中 PP/MPAEVOH系列吹瓶樣品對汽油之滲透阻隔性質隨MPAEVOH內EVOH達一最適化添加量時其阻隔效果達最佳化,且在其吹瓶樣品內可發現明顯被拉長的MPAEVOH積層結構。比如, PP/MPA5EVOH1吹瓶樣品之汽油滲透速率僅2.5×10-2g/day已明顯較PP/MPA吹瓶樣品之滲透速率(2.8×10-1g/day)為慢,其汽油滲透阻隔改善倍率已是原PP與PP/MPA瓶之108與11倍。 為了解上述這些有趣的汽油滲透阻隔性質,PP, PP/EVOH, PP/MPA 與PP/MPAEVOH 樣品的流變、熱學、X光繞射(WAXD)與FT-IR性質也在本文中進行詳細研究與討論。
    另一方面值得注意的當摻混NYC入MPA後,MPANYC吹膜樣品的氧氣滲透速率明顯比MPA與NYC好。 事實上,MPANYC吹膜樣品的氧氣滲透速率隨著其內NYC 含量達20 wt%之最適化值時, MPA4NYC1 吹膜樣品的氧氣阻隔改善倍率已達105倍。 此種阻隔氧氣滲透之性質已與文獻中所報導之PVDC 吹膜樣品的阻隔氧氣滲透性能相近。 類似於上述NYC含量對氧氣滲透性質之影響,NYC含量對MPANYC吹膜樣品之自由體積性質(如Rf, Vf與Fv 等數值)的影響亦有相似的趨勢。 比如,MPANYC 樣品隨其內NYC含量達20%時Rf, Vf, I3與Fv 數值均分別達到一最小數值。 寬角X光繞射性質建議MPA分子和NYC樹脂中的PA分子在任何比例下是相容的, 因原先對應於MPA內PA的晶形結晶熔融吸熱峰及X光繞射峰幾乎消失不見。 進一步的TEM型態分析發現,當NYC含量達到20wt%時,在MPA4NYC1 及 MPA8NYC1 超薄切片樣品上發現了明顯延長、重疊長度接近700nm的clay矽酸鹽片層結構。 但當NYC含量低於20%,這些在MPANYC 超薄切片樣品上發現的clay矽酸鹽片層長度明顯隨其內NYC含量下降而下降。 上述MPANYC樣品阻隔性質改善的原因推測乃歸因於其明顯減少了自由體積性質(如Rf, Vf與Fv 數值)或被拉長的連續clay矽酸鹽片層結構。
    最後,本文研究了脫氧塑膠的製備及其各種性能。三種脫氧塑膠分別以抗壞血酸(Vc)、鐵粉(Fe)、改性鐵粉(MFe)和抗壞血酸的混合物作為脫氧劑,選用具有高透氧性和高透水汽率的高分子材料EVA為基材。分別研究脫氧劑配方、用量對所製備脫氧塑膠脫氧與抗張性能的影響。 結果發現EFe 和EMFe系列樣品的抗張強度和斷裂伸長率比含相同重量脫氧劑成分的EVc系列樣品為高。另一方面,EVcMFe系列樣品的抗張強度和斷裂伸長率隨複合脫氧劑中Vc 含量的減少而明顯增大。進一步的脫氧性能測試結果清楚地表明,以經氯化鈉改性後的鐵粉作脫氧劑製備的脫氧膜的脫氧性能大大優於分別以相同重量的未經氯化鈉改性的鐵粉和Vc作脫氧劑製備的脫氧膜。將Vc和MFe混合物作為複合脫氧劑混入EVA中,當抗壞血酸與改性鐵粉的重量比為3/7至5/5之間時,EVcMFe 樣品的脫氧性能表現出特殊的增效效果。為了進一步研究這種增效效果產生的原因,用SEM和EDX對EVcMFe系列樣品中以各種比例抗壞血酸和改性鐵粉為脫氧劑的樣品作了結構分析。對EVcMFe系列樣品表面結構分析表明:當Vc與MFe的重量比在3/7至5/5之間時,改性鐵粉表面輕輕裹著一層抗壞血酸又沒有被抗壞血酸粉體過分包裹;而當Vc與MFe的重量比大於5/5時,在EVcMFe樣品中MFe幾乎被抗壞血酸粉體包裹。 此外還對EVc,、EFe、 EMFe 和 EVcMFe 系列樣品之所以產生上述有趣脫氧性質的機理進行了探討。另外,減小鐵粉粒徑,增加環境的濕度和溫度都有助於提高脫氧膜的脫氧速率。經貯存實驗顯示,脫氧膜確實可以減緩模擬食品中的油脂氧化。


    Investigation of the gasoline permeation resistance of the as-blow-molded polypropylene, polypropylene / ethylene vinyl alcohol (PP/EVOH), polypropylene / modified polyamide (PP/MPA) and polypropylene / blends of modified polyamide and ethylene vinyl alcohol (PP/MPAEVOH) bottles. Investigation of the oxygen barrier and blending properties of the modified polyamide (MPA) and nylon 6 clay (NYC) blends (MPANYC) were also carried out in this study. Last but not least, the tensile and oxygen depletion properties of EVA resins blended with varying compositions of iron (Fe), modified iron (MFe) and/or ascorbic acid (Vc) oxygen scavengers were systematically investigated. The permeation resistance of gasoline improved dramatically after blending MPAEVOH barrier resins in PP matrices during blow molding processes. Surprisingly, by using proper compositions of MPAEVOH resins, the gasoline permeation rate of PP/MPA5EVOH1 bottles is only 0.025 g/day at 40°C, which is about 108 and 11 times slower than those of the PP and PP/MPA bottles, respectively. The oxygen permeation rate of the NYC film specimen is slightly lower than that of the MPA film specimen. After blending NYC in MPA, the oxygen barrier properties of the MPANYC film specimens are significantly better than those of the MPA and NYC film specimens. The oxygen permeation rates of MPANYC film specimens reduce significantly and reach the minimum as their NYC contents increase to 20 wt%. In fact, at 20 wt% optimum amount of NYC, the oxygen barrier improvement of MPA4NYC1 film specimen reach 105 time value, which is significantly better than those of other MPANYC film specimens and is at the same order of magnitude of barrier improvement as those of PVDC film specimens reported in the literature. Similar NYC content dependence was found on the plots of Rf, Vf,I3 and Fv values vs. the NYC contents of MPANYC specimens.  The minimum Rf, Vf,I3 and Fv values of MPANYC specimens were always found as their NYC contents reach about 20 wt%. The X-ray diffraction properties suggest that MPA molecules are miscible with the nylon 6 molecules present in the NYC resin at any proportion, since the characteristic diffraction peaks of  form PA crystals originally associated with the MPA resin almost disappear after blending varying amounts of NYC in MPA resins. Further morphological investigations found that demarcated structures of elongated and overlapped clay layers were found on the microtomed surfaces of MPANYC specimens as their NYC contents reach 20.0 wt. %, at which the lengths of the elongated and overlapped clay layers can reach about 700 nm. However, at NYC contents lower than 20.0 wt%, the lengths of these “elongated and overlapped” clay layers reduce significantly as the NYC contents continue to reduce. Presumably, the improved barrier properties of the MPANYC film specimens are mainly attributed to the reduced free volume properties (i.e. Rf, Vf and Fv values) and the elongated and continuous laminas of nanometer clays.
    The tensile and oxygen depletion properties of EVA resins blended with varying compositions of iron, modified iron and ascorbic acid oxygen scavengers were systematically investigated. As expected, f and f values of EVc and EMFe series samples decrease significantly as their MFe and Vc contents increase, respectively. In contrast, EFe and EMFe series samples always exhibit significantly higher f and f values than EVc series samples filled with the same oxygen scavenger contents. Moreover, the f and f values of the EVcMFe series samples increase significantly as the Vc loadings present in the oxygen scavenger compounds decrease. Presumably, this is due to the fact that the volumes of the Fe and MFe powders are much smaller than those of the ascorbic acid powders with the same weight loadings, since the degree of “stress concentration” and “early breakage of EVA molecules” at the boundaries is expected to reduce as the volume loadings of the oxygen scavengers reduce. The oxygen depletion experiments clearly suggest that the oxygen depletion rates of modified iron powders filled EMFe series samples are much faster than those of EVc and EFe series samples filled with the same weight loadings of ascorbic acid and pure iron powders, respectively, wherein the EVc series samples exhibit slightly slower oxygen depletion rates than those of the corresponding EFe series samples. After blending Vc together with MFe oxygen scavenger compounds in the EVA resins, a “synergistic” effect on the oxygen depletion properties of the EVcMFe samples was observed when the weight ratios of Vc to MFe oxygen scavengers are between 3/7 to 5/5. In fact, the O2r values present in the airtight flask of EVc5MFe5 specimen at varying time are even lower than those of the EMFe10 specimen. However, at weight ratios of Vc to MFe higher than 5/5, the O2r values present in the airtight flask of EVc7MFe3 and EVc9MFe1 specimens at varying time are significantly higher than their theoretical O2r values estimated using “simple mixing rule”. Further SEM and EDX analysis of the compositions on the surfaces of EVcMFe series samples indicate that the ascorbic acid powders were found surrounding but not over-wrapping on the surfaces of the MFe powders as the weight ratios of Vc to MFe present in the EVcMFe specimens are between 3/7 and 5/5. On the other hand, the MFe powders found in the EVcMFe specimens were nearly wrapped by the ascorbic acid powders as the weight ratios of Vc to MFe are more than 5/5. Possible mechanisms account for these interesting oxygen depletion properties of EVc, EFe, EMFe and EVcMFe series samples are proposed.

    目 錄 中文摘要 Ⅰ 英文摘要 IV 誌謝 VII 目錄 VIII 圖表索引 XII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 8 1-2-1 高分子聚摻混物 8 1-2-2 氫鍵對高分子摻混物的影響 10 1-2-3 氣體或溶劑蒸氣對高分子材料滲漏 16 1-2-3-1 氣體或溶劑蒸氣滲漏分子特性對滲漏性之影響 17 1-2-3-2 高分子材料特性對滲漏性的影響 21 1-2-3-3 添加劑對滲漏性的影響 31 1-2-4高阻隔性塑膠材料簡介添加劑對滲漏性的影響 32 1-2-5泛用型高阻隔包裝材料 38 1-2-6聚醯胺樹酯 (Polyamide;PA) 41 1-2-7聚偏二氯乙烯(Polyvinylindene Chloride;PVDC) 42 1-2-8聚乙烯醇 (Polyvinyl alcohol;PVA) 43 1-2-9乙烯-乙烯醇共聚物 (Ethylene/Vinyl alcohol;EVOH) 45 1-2-10 聚乙烯阻隔性容器之製備 53 1-2-11 聚摻混物中的相容化劑先質(CP) 56 1-2-12 聚烯烴/聚醯胺摻混物之研究 59 1-2-13 乙烯乙烯醇共聚物阻隔性材料之研究 61 1-2-14 尼龍奈米粘土共聚物阻隔性材料之研究 67 1-2-15 改質乙烯乙烯醇共聚物(Modified ethylene vinyl alcohol co- polymer,MEVOH)及改質聚醯胺/乙烯乙烯醇共聚物摻混 物(Modified blend of polyamide and ethylene vinyl alcohol copolymer,MPAEVOH)之製備原理 79 1-2-16改質聚醯胺/奈米尼龍共聚物摻合物(Modified blend of polyamide and nylon clay copolymer,MPANYC)之製備原理 84 1-2-17活性包裝(Active Package)在食品包裝中的應用 85 1-2-17-1 EVA簡介 89 1-2-17-2脫氧劑的分類 91 1-3 參考文獻 95 第二章 聚丙烯/改質聚醯胺乙烯乙烯醇共聚合物汽油阻隔性能之研究 110 2-1 簡介 110 2-2 實驗 112 2-2-1 材料和樣品的準備 112 2-2-2 流變性質分析 115 2-2-3 PP、MPA和MPAEVOH 之熱學性質分析及廣角X光繞射分析(WAXD) 116 2-2-4 紅外線光譜(FT-IR)性質分析 117 2-2-5 PP/MPA與PP/MPAEVOH系列吹瓶樣品的形態分析 118 2-2-6 吹瓶樣品的汽油滲漏試驗 119 2-3 結果和討論 120 2-3-1 MPA、EVOH及MPAEVOH試樣的流變性質分析 120 2-3-2 PA、MPA、EVOH及MPAEVOH樣品的熱學性質分析及寬角X-ray繞射性質分析 122 2-3-3 FT-IR圖譜分析 127 2-3-4 PP/MPA與PP/MPAEVOH系列吹瓶樣品的形態分析 134 2-3-5 PP,PP/EVOH,PP/MPA與PP/MPAEVOH汽油滲透性質分析 136 2-4 結論 138 2-5 參考文獻 140 第三章 改質聚醯胺奈米尼龍摻合物吹膜樣品氧氣滲透阻隔性質與加工性質之研究 143 3-1 簡介 143 3-2 實驗 145 3-2-1 材料和樣品的準備 145 3-2-2 吹膜樣品的滲透性質 148 3-2-3 MPANYC 與NYC吹膜樣品的型態分析 149 3-2-4 廣角X-ray繞射性質分析 150 3-2-5 自由體積特性分析 151 3-3 結果和討論 153 3-3-1 NYC與MPANYC吹膜樣品的氧氣滲透性質分析 153 3-3-2 NYC與MPANYC 吹膜樣品的TEM形態分析 155 3-3-3 NYC與MPANYC吹膜樣品的寬角X光繞射性質分析 157 3-3-4 自由體積性質分析 159 3-4 結論 163 3-5 參考文獻 164 第四章 乙烯-醋酸乙烯酯共聚合物添加新穎的脫氧劑其脫氧性質之研究 167 4-1 簡介 167 4-2 實驗 170 4-2-1 材料和樣品的準備 170 4-2-2 抗張強度分析 173 4-2-3 脫氧性質分析 173 4-2-4 形態與表面成份分析 174 4-3 結果和討論 175 4-3-1 EVA脫氧樣品形態與表面成份分析 175 4-3-2 EVA脫氧樣品抗張強度分析 178 4-3-3 脫氧性質分析 182 4-4 結論 188 4-5 參考文獻 189 第五章 未來研究方向 192 參考文獻 193 附錄: 著作及論文發表 194 作者簡介 195 授權書 196 圖表索引 一、圖索引 圖1-2-1 聚摻混物之性質與組成間之關係 9 圖1-2-2 聚醯胺之N-H基延伸峰之紅外線光譜圖 12 圖1-2-3 高分子氫鍵以直線方式鍵結 13 圖1-2-4 兩單體自身氫鍵鍵結的環狀結 14 圖1-2-5 自身結合的B與另一個A-H之間的氫鍵鍵結型式 (如醚類或酯類) 15 圖1-2-6 天然橡膠在25℃擴散係數與氣體分子莫耳體積的關係(d 為氣體分子直徑) 18 圖1-2-7 PVC於30℃下,各種滲漏分子之分子大小對其擴散性之 影響 19 圖1-2-8 聚乙烯乙烯醇共聚物中乙烯基(ethylene)含量對氧氣阻隔性 之關 24 圖1-2-9 不同聚乙烯乙烯醇共聚物之氧氣阻隔滲漏性質與相對濕度之關係 26 圖1-2-10 Terylene薄膜的滲漏與擴散係數與樣品結晶度之關係圖 (a)氫( * )、(b)氦(•) 28 圖1-2-11 泛用型塑膠材料氧氣、水蒸氣滲漏性質分析 40 圖1-2-12 泛用型塑膠材料二氧化、水蒸氣碳滲漏性質分析 40 圖1-2-13 溫度的改變對氧氣滲透速率與自由體積的變化圖 48 圖1-2-14 濕度的改變對氧氣滲透速率與自由體積的關係變化圖 49 圖1-2-15 聚乙烯乙烯醇共聚物(EVOH)之氧氣阻隔滲透性質與相對濕度之關係(EF-F : ethylene 32mol% ) 50 圖1-2-16 聚乙烯乙烯醇共聚物(EVOH)之氧氣阻隔滲透性質與相對濕度之關係(EF-E : ethylene 44mol% ) 51 圖1-2-17 經順向過的聚乙烯乙烯醇共聚物(EVOH)之氧氣阻隔滲透性質與相對濕度之關係(EF-XL : ethylene 32mol% ) 52 圖1-2-18 表面磺化處理對聚乙烯之汽油滲漏性質的影響 55 圖1-2-19 AIROPAK製程製備氟化吹瓶成型容器之示意圖 55 圖1-2-20 聚乙烯乙烯醇共聚物(EVOH)之氧氣阻隔滲漏性質與相對濕度之關係(EF-F : ethylene 32mol% ) 64 圖1-2-21 聚乙烯乙烯醇共聚物(EVOH)之氧氣阻隔滲漏性質與相對濕度之關係(EF-E : ethylene 44mol% ) 65 圖1-2-22 濕度的改變對氧氣滲漏速率與自由體積的關係變化圖 66 圖1-2-23 奈米複合材料 67 圖1-2-24 層狀矽酸鹽黏土結構 68 圖1-2-25 奈米薄膜的氣體滲透 75 圖1-2-26 摻混不同含量蒙脫土的三種聚酯薄膜:PETG(乙二醇共聚 的PET) ,PET,PEN的氧氣滲透速率圖 76 圖1-2-27 蒙脫土以不同插層劑處理後所製備的PET/黏土奈米複合材料對氧氣的滲透速率圖 77 圖1-2-28 以nylon nanocomposite及high-barrier nylon為中心層之三層瓶(0.5L、29g)的氧氣滲透速率圖 78 圖1-2-29a 界面反應中的典型胺基-酸酐反應 81 圖1-2-29b 典型CP/EVOH摻混物中各官能基之反應示意圖 82 圖1-2-29c 典型PA/CP/EVOH摻混物中各官能基之反應示意圖 83 圖1-2-30 典型CP/NYC摻合物中各官能基之反應示意圖 85 圖2-3-1 PP(*), PA(×), MPA(▬), EVOH(▲), MPA8EVOH1(○), MPA5EVOH1(○), MPA2EVOH1 (○), MPA1EVOH1(○) 與 MPA1EVOH2 (○)樣品在不同剪切速率下之熔融剪切黏度 121 圖2-3-2-1 綜結了典型CP、PA、MPA、EVOH與MPAEVOH系列樣品之熱學分析圖譜 125 圖2-3-2-2 綜結綜結PA、MPA、EVOH及MPAEVOH系列樣品對應之寬角X光繞射性質 126 圖2-3-3-1 綜結CP、PA及MPA之FTIR光譜圖 129 圖2-3-3-2 展示出MPA樣品在不同溫度下之FTIR光譜圖 130 圖2-3-3-3 綜結了EVOH樣品在不同溫度下的各種FT-IR光譜圖 131 圖2-3-3-4 綜結了經不同溫度氫鍵鍵結的氫氧基吸收帶與未經氫鍵鍵 結的氫氧基吸收帶之間的頻率差(△ν)數據 132 圖2-3-3-5 綜結了MPAEVOH系列樣品在35℃下的各種FT-IR光譜圖 133 圖2-3-4 綜結PP, PP/EVOH, PP/MPAEVOH and PP/MPA系列吹瓶樣品之SEM斷面圖 135 圖2-3-5 綜結PP/MPA 與PP/MPAEVOH系列吹瓶樣品於40℃下之汽油平均滲漏速率 138 圖3-3-1 NYC、MPA及MPANYC系列氧氣滲透性質分析(○) (P0) 與(□) evaluated by Nielsen approximation (Pc) 154 圖3-3-2 (a) NYC, (b) MPA1NYC1, (c) MPA2NYC1, (d) MPA4NYC1, (e) MPA8NYC1, (f) MPA16NYC1, (g) MPA24NYC1 與 (h) MPA48NYC1吹膜樣品的TEM圖 156 圖3-3-3 (a) MPA, (b) MPA48NYC1, (c) MPA24 NYC 1,(d) MPA16NYC1, (e) MPA8NYC1, (f) MPA4 NYC1, (g) MPA2NYC1, and (h) NYC 樣品的X光繞射峰圖譜 158 圖3-3-4 (a) MPANYC試樣在不同NYC含量下自由體積孔洞的平均半徑(+)(Rf) 與(r)自由體積 (Vf); (b) MPANYC試樣在不同NYC含量下(‾)湮滅強度 (I3)與(£)自由體積分率(Fv) 162 圖4-3-1-1 SEM micrographs of the fracture surfaces of (a) EVA, (b) Evc, (c) EFe10, (d) EMFe10 specimens and EDX composition analysis of the particles present in (e) Evc and (f) EMFe10 film specimens 176 圖4-3-1-2 SEM micrographs of the fracture surfaces and EDX composition analysis of the particles present in (a) EVc1MFe9, (b) EVc3MFe7, (c) EVc5MFe5, (d) EVc7MFe3, (e) EVc9MFe1 film specimens 177 圖4-3-2-1 The values of tensile strength (□) and elongation at break (●) of EVA and EMFe specimens with varying contents of MFe powders 179 圖4-3-2-2 The values of tensile strength (□) and elongation at break(●) of EVA and EVc specimens with varying contents of Vc powders 180 圖 4-3-2-3 The tensile strengths (□) and elongations at break(●) of EVcMFe series samples with 10phr of oxygen scavenger compound of Vc and MFe powders 181 圖4-3-3-1 The residual oxygen concentrations (O2r) present in the airtight conical flasks of EVc1 (◇), EVc3 (◇), EVc6 (◇), EVc10 (◇), EVc20 (◇), EVc50(◇), EFe10(▲), EMFe1(△), EMFe3(△), EMFe6(△), EMFe10(△), EMFe20(△) and EMFe50(△) film specimens 184 圖4-3-3-2 The residual oxygen concentrations (O2r) present in the airtight conical flasks of EVc1(‾) EMFe9(£) EVc1MFe9(▲) film specimens. (The dashed line represents the theoretical oxygen concentrations present in the airtight flasks with EVc1MFe9 film specimen calculated using simple mixing rule.) 185 圖4-3-3-3 The residual oxygen concentrations (O2r) present in the airtight conical flasks of EVc3(‾) EMFe7(£) EVc3MFe7(▲) EMFe10(×) film specimens. (The dashed line represents the theoretical oxygen concentrations present in the airtight flasks with EVc3MFe7 film specimen calculated using simple mixing rule.) 185 圖4-3-3-4 The residual oxygen concentrations (O2r) present in the airtight conical flasks of EVc5(‾) EMFe5(£) EVc5MFe5(▲) EMFe10(×) film specimens. (The dashed line represents the theoretical oxygen concentrations present in the airtight flasks with EVc5MFe5 film specimen calculated using simple mixing rule.) 186 圖4-3-3-5The residual oxygen concentrations (O2r) present in the airtight conical flasks of EVc7(‾) EMFe3(£) EVc7MFe3(▲) film specimens. (The dashed line represents the theoretical oxygen concentrations present in the airtight flasks with EVc7MFe3 film specimen calculated using simple mixing rule.) 186 圖4-3-3-6 The residual oxygen concentrations (O2r) present in the airtight conical flasks of EVc9(‾) EMFe1(£) EVc9MFe1(▲) film specimens. (The dashed line represents the theoretical oxygen concentration present in the airtight flasks with EVc9MFe1 film specimen calculated using simple mixing rule.) 187 二、表索引 表1-2-1 氮與氧分子之原子半徑與鍵長 20 表1-2-2 高分子官能基對氧氣滲漏性質的影響 24 表1-2-3相對濕度對氧氣滲漏性質的影響 25 表1-2-4 各種高分子之滲漏性質 27 表1-2-5 結晶堆積完整度與分子側鏈基團對氧氣滲漏性質的影響 27 表1-2-6 分子順向對聚苯乙烯之二氧化碳滲漏性質的影響 29 表1-2-7 分子順向對氧氣滲漏性質的影響 29 表1-2-8 熱處理與分子順向對氧氣阻隔滲漏性質的影響 30 表1-2-9 添加劑對氧氣滲漏性質的影響 31 表1-2-10 食品包裝材料發展與應用 32 表1-2-11 食品包裝塑膠材料性質 35 表1-2-12 高阻性隔塑膠材料優缺點 39 表1-2-13 相對濕度對氧氣滲透性的影響 44 表1-2-14 高分子容器之甲苯及氧氣滲漏性質的比較 54 表1-2-15 多層共擠壓的構造與應用 63 表1-2-16 Nylon 6 Clay聚合物中粘土含對氧氣阻隔效果之關係 74 表2-2-1-1 PP、MPA、CP 與 EVOH樹脂的物理性質 113 表2-2-1-2 所製MPAEVOH系列摻合樣品之組成 114 表2-3-5綜結PP, PP/EVOH與PP/MPA系列吹瓶樣品於40℃下之汽油平均滲漏速率 137 表3-2-1詳列所製備MPANYC系列摻合樣品之組成 147 表3-3-1綜結NYC、MPA及MPANYC系列氧氣滲透性質分析 154 表3-3-4綜結PA、MPA及NYC系列樣品自由體積性質分析 161 表4-2-1-1 The compositions of EVA and EVcx specimens blended with varying amounts of ascorbic acid 171 表4-2-1-2 The compositions of EVA, EFe10 and EMFex specimens blended with varying amounts of iron or modified iron powder 172 表4-2-1-3 The compositions of EVcMFe specimens blended with varying amounts of ascorbic acid and modified iron powder 172

    1-3 參考文獻
    1. J. P. Hobbs, M. Anand, and B. A. Campion, “in Barrier Polymer and Structures”, W. J. Koros, Ed., Chapter 15, Am. Chem. Soci., Washington, D.C.(1990).
    2. W. E. Walles, “in Barrier Polymer and Structures”, W. J. Koros, Ed., Chapter 14, Am. Chem. Soci., Washington, D.C.(1990).
    3. S. Willian, Chemtech August, 481(1988).
    4. C. A. Finch, “Polyvinyl Alcohol”, John Wiley and Sons, New York(1992).
    5. W. J. Karos, “Barrier Polymers and Structures”, ACS Symposium Series 423, Am. Chem. Soci., Washington, D.C.(1989).
    6. K. M. Finlayson, “Plastic Film Technology: High Barrier Plastic Film for Packaging”, Technomic Publishing Co., Lancaster, Pa.(1989).
    7. J. T. Yeh, C. C. Fan-Chiang, and M. F. Cho, Polym. Bull. 35, 371(1995).
    8. J. T. Yeh, C. C. Fan-Chiang, and S. S. Yang, J. Appl. Polym. Sci., 8, 1531(1997).
    9. J. T. Yeh, and C. C. Fan-Chiang, J. Appl. Polym. Sci., 66, 2517(1997).
    10. J. T. Yeh, and C. F. Jyan, Polym. Eng. Sci., 38, 1482(1998).
    11. J. T. Yeh, and C. C. Fan-Chiang, R.O.C. Patent 126734(2001).
    12. J. T. Yeh, and C. C. Fan-Chiang , J. Polym. Res., 3, 211(1996).
    13. J. T. Yeh, and C. F. Jyan, ANTEC, 3567(1998).
    14. J. T. Yeh, C. C. Chao, and C. H. Chen, J. Appl. Polym. Sci., 76, 1997(2000).
    15. J. T. Yeh, W. S. Jou, and Y. S. Su, J. Appl. Polym. Sci., 9, 2158(1999).
    16. J. T. Yeh, W. S. Shih, and S. S. Huang, Macromol. Mater. Eng., 287, 23 (2002).
    17. M. Salamone, “Wiley Encyclopedia of Packaging Technology”, M. Baker, Ed., Wiley, New York, 48(1999).
    18. C. E. Rogers, “Engineering Design for Plastics”, E. Baer, Ed., Reinhold, New York, 686(1964).
    19. P. M. Subramanian, Polym. Eng. Sci. 25, 483(1985).
    20. P. M. Subramanian, Polym. Eng. Sci. 27, 663(1987).
    21. A. K. Gupta, and S. N. Purwar, J. Appl. Polym. Sci., 29, 1595(1984).
    22. E. M. Wco, J. W. Bariow, and D. R.Paul, Polymer, 26, 763(1985).
    23. O. Olabist, L. M. Robeson, and M. T. Shaw, “Polymer-Polymer Miscibility”, Academic Press, New York(1979).
    24. D. R. Paul, and S. Newman, “Polymer Blends”, Academic Press, New York(1978).
    25. J. A. Manson, and L. H. Sperling, “Polymer Blends and Composies”, Plenum Press, New York(1977).
    26. B. N. Epstein, U.S. Patent 4174358(1978).
    27. E. A. Flexman, Polym. Eng. Sci., 19, 564(1979).
    28. S. Wu, J. Polym. Sci, 21, 669(1983).
    29. S. Y. Hobbs, R. C. Bopp and V. H. Watkins, Polym. Eng. Sci., 23, 380 (1983).
    30. 林建中, 應用高分子化學與材料, 292(1989).
    31. G. C. Pimentel, and A. L. McClellan, “The Hydrogen Bond”, W. H. Freeman and Co., Sanfrancisco and London, 342(1960).
    32. L.Pauling, R. B.Corey and H. R. Branson, Proc. Nat. Acad. Sci., 37, 205(1951).
    33. J. P. Waston, and F. H. Crick, Nature, 171, 737, 964(1953).
    34. M. M. Coleman, and J. Zarian, J. of Polym. Sci.: Polym. Phys. 17, 837(1979).
    35. M. M. Coleman, and E. J. Moskala, Polymer, 24, 251(1983).
    36. M. M.Coleman, J. F. Graf and P. C. Painter, “Specific Interaction and Miscibility of Polymer Blends”, Technomic, Lancaster, PA(1991).
    37. K. F. Purcell and R. S. Drago, Journal of the American Society, 89, 2874(1968).
    38. E. J. Moskasa and M. M. Coleman, Polymer Communciations, 24, 207(1983).
    39. Skrovanek, D. J., Howe, S. E., Painter, P. C. and Coleman, M. M., Macromolecules, 19, 699(1986).
    40. L. F. Wang, E. M. Pearce and T. K. Kwei, J. of Polym. Sci.: Polym. Phys., 29, 619(1991).
    41. M. Michael and M. M. Coleman., J. Macromol. Sci.-Phys., B32 (3), 295(1993).
    42. F. Y. Wang, C. C. M. Ma, Macromol. Chem. Phys., 202, 2328(2001).
    43. Pauling, L., “The Nature of the Chemical Bond”, 3th Ed., Cornell University Press, Ithaca, New York(1971).
    44. V. Stannett, J. Membr. Sci., 3, 97(1978).
    45. R. M. Felder and G. S. Huvard, “in Methods of Experimental Physics”, Vol. 16, C. R. Fava, Ed., Academic Press, New York(1980).
    46. J. Crank and G. S. Park, “Diffusion in Polymers”, J. Crank and G. S. Park, Eds., Chapter 1, Academic Press, New York(1968).
    47. C. A. Kumins and T. K. Kwei, “Diffusion in Polymers”, J. Crank and G. S. Park, Eds., Chapter 4, Academic Press, New York(1968).
    48. V. Stannett, J. Membr. Sci., 3, 97(1978).
    49. J. S. Vrentas and J. L. Duda, J. Polym. Sci.: Polym. Phys., 15, 403(1977).
    50. J. S. Vrentas and J. L. Duda, J. Polym. Sci.: Polym Phys. 15, 417(1977).
    51. C. E. Rogers, M. Fels and N. N. Li, Rec. Devel. Sep. Sci., 2, 107(1972).
    52. V. Stannett, “Diffusion in Polymers”, J. Crank and G. S. Park, Eds., Chapter 2, Academic Press, New York, 15(1968).
    53. T. Graham, Phil. Mag., 32401(1866).
    54. 汪輝雄,聚合體物性學,第12章,243(1980)。
    55. A. R. Berens and H. B. Hopfenberg, J. Membr. Sci., 10, 283(1982).
    56. Prof. Wolf R. Vieth, “Diffusion In and Through Polymers”, Hanser, New York, 10(1991).
    57. Martin Knudsen, “The Kinetic Theory of Gases”, Great Britain, 7(1934).
    58. C. E. Rogers, J. A. Meyer, V. Stannett and M. Szwarc, TAPPI, 39, 741(1956).
    59. S. Steingiser, S. P. Nemphos, M. Salame, “in Kirk-Othmer Encyclopedia of Chemical Technology”, 3rd Ed., Vol. 3, M. Grayson Ed., Interscience, New York, 480-502(1978).
    60. R. J. Ashily, “in Polymer Permeability”, J. Comyn Ed., Chapter 7, Elsevier Applied Science, London and New York(1988).
    61. E. J. Mayor and K. Kammermeyer, Modern Plastics, 39, 136(1962).
    62. T. OKAYA and K. IKARI, “in Polyvinyl Alcohol-Developments”, C.A.Finch Ed., Chapter 8, John Wiley&Sons, New York, 219-223(1992).
    63. J. A. Brydson, “in Plastics Materials”, Iliffe Ed., Chapter 5, Butterworth Heinemann, London, 80(1966).
    64. A. S. Michaels and R. B. Parker, J. Polym. Sci., XLI, 53(1953).
    65. A. S. Michaels and H. J. Bixler, J. Polym. Sci., L, 393(1961).
    66. A. S. Michaels and H. J. Bixler, J. Polym. Sci., L, 413(1961).
    67. L. H. Wang and R. S. Porter, J. Polym. Sci.: Polym. Phys., 22, 1645(1984).
    68. D. H. Weinkauf and D. R. Paul, “in Barrier Polymer and Structures”, William J. Koros Ed., Chapter 3, American Chemical Society, Washington, 1224(1990).
    69. I. Auerbach, W. R. Miller, W. C. Kuryla and S. D. Gehman, J. Polym. Sci., 28, 129(1958).
    70. W. E. Brown, and Dekker, “Plastics in Food Packaging”, Chapter 1, NewYork, 33(1992).
    71. R. J. Crawford, Butterworth Heinemann, “Plastics Engineering”, Chapter 1, NewYork, 36(1998).
    72. Long, F. A.;Thompson, L. J. J. Polym. Sci., 14, 321(1954).
    73. Min K, White JL, Feller JF. Polym Engng Sci, 24,1327(1984).
    74. Jyongsik Jang and Dong Kweon Lee, J. Polym, 45(2004).
    75. T. OKAYA and K. IKARI, in Polyvinyl Alcohol-Developments, C.A.Finch Ed, at Chapter 8, John Wiley&Sons, New York, 1992.
    76. M. Muramatsu, M. Okura, K. Kuboyama , T. Ougizawa, T.Yamamoto, Y. Nishihara, Y. Saito and Kenji Ito, Koichi Hirata, Yoshinori Kobayashi, Radiation Physics and Chemistry, 68, 561(2003).
    77. Zhongbin Zhang, Ian J. Britt, Marvin A. Tung, J. Polym. Sci., 82, 1866(2001).
    78. Chern, R. T.; Koros, W. J.; Sanders, E. S.; Yui, R. J.Membr Sci., 15, 157(1983).
    79. Vieth, W. R. Diffusion in and through Polymers; Oxford University Press: New York, 1991.
    80. J. B. Faisant and A. Aït-Kadi and M. Bousmina and L. Deschênes, Polymer, 39, 533(1998).
    81. Lohfink, G. W. and Kamal, M. R, Polymer Engineering Science, 33, 404(1993).
    82. Grace, H. P, Chemical Engineering Communications, 14, 255(1982).
    83. Kamal, M.R, Garmabi, H, Hozhabr, S. and Arghyris, L, Polymer Engineering Science, 1995.
    84. M. Salamone, “Wiley Encyclopedia of Packaging Technology”, M. Baaker, Ed., John Wiley and Sons, New York, 48(1986).
    85. C. E. Rogers, “in Engineering Design for Plastics”, E. Baer, Eds., Reinhold, New York, 686(1964).
    86. K. A. Boni, U.S.Patent, 4102974(1978).
    87. R. J. Preto and Z. Scheckman, U.S. Patent, 3873677(1975).
    88. P. Forster and M. Herner, Kunststoffe, 69, 146(1979).
    89. S. Lustig and J. Vicik, U.S. Patent, 4293664(1981).
    90. D. M. Buck, P. D. Marsh, F. A. Milcetich and K. J. Kallish, Plast. Eng., April., 33, 35(1986).
    91. G. Tarancon, U.S. Patent, 4467075(1984).
    92. D. Dixon, U.S. Patent, 3862284(1975).
    93. J. P. Hobbs, M. Anand and B. A. Campion, “in Barrier Polymer andStructures”, William J. Koros Eds., Chapter 15, American Chemical Society, Washington, 658(1990).
    94. V. K. Mehra, U. S. Patent 4,950,513(1990).
    95. 台灣聚合化學品股份有限公司,中華民國發明專利,第53999號(1992).
    96. Xanthos and S. S. Dagli, Polym. Eng. Sci., 31, 929(1991).
    97. W. Barentsen and D. Heikens, Polymer, 14, 579(1973).
    98. W. Barentsen, D. Heikens and P. Piet, Polymer, 15, 119(1974).
    99. D. Heikens and W. Barentsen, Polymer, 18, 69(1977).
    100. D. Heikens, N. Hoen, W. Barentsen, P. Piet and H. Ladan, J. Polym. Sci., 62, 309(1978).
    101. F. Ide, A. Hasegawa, J. Appl. Polym. Sci., 18, 963(1974).
    102. S. Endo, K. Min, J. L. White and T. Kyu, Polym. Eng. Sci., 26, 45(1986).
    103. M. Yoshida, J. J. Ma, K. Min, J. L. White and R. P. Quirk, Polym. Eng. Sci., 30, 30(1990).
    104. R. Jiang, R. P. Quirk, J. L. White and K. Min, Polym. Eng. Sci., 31, 1545 (1991).
    105. D. K. Setua and J. L. White, Polym. Eng. Sci., 31, 1742(1991).
    106. W. J. Ho, and R. Salovery, Polym. Eng. Sci., 21, 839(1981).
    107. F. C. Stehling, T. Huff, C. S. Speed and G. Weissert, J. Appl. Polym. Sci., 26, 2693(1981).
    108. C. C. Chen and J. L. White, Polym. Eng. Sci., 33, 923(1993).
    109. R. H. Miettinen, J. Seppala and O. T. Ikkala, Polym. Eng. Sci., 32, 868(1992).
    110. J. Duvall, V. Topolkaraev, E. Baer and C. Sellitti, Polymer, 35, 3948(1994).
    111. T. Nishio et al., J. Polym. Eng., 10, 123(1991).
    112. R. H. Miettinen, J. Seppala and O.T. Ikkala, Polym. Eng. Sci., 32, 868(1992).
    113. A. K. Breck, et al., European Paten, 280, 455(1988).
    114. 黃建興、李茂松、蘇德堂、林斌淵、陳憲明,工研院化工所,”研究尼龍6之耐衝擊改質”,第15屆高分子研討會(1992).
    115. 黃建興、林坤輝、邱南昌,中國技術服務社觸媒研究中心,”PA6/彈性體/馬來酐接枝化PE摻混物”,第15屆高分子研討(1992).
    116. P. M. Subramanian, U. S. Patent 4410482(1983).
    117. P. M. Subramanian, U. S. Patent 4444817(1984).
    118. R. C. Diluccio, U. S. Patent 4416942(1983).
    119. M. R. Kamal and I. A. Jinnah, Polym. Eng. Sci., 32, 868(1992).
    120. R. Bell, V. Mehra, P. M. Subramanian, and J. Switten, ANTEC, 780(1990).
    121. J. M. Torradas and D. Zhang, ANTEC, 1468(1991).
    122. C. A. Finch, “Polyvinyl Alcohol Development”, John Wiley&Sons, Chapter 8(1991).
    123. S. C. Kim, and S. Y. Lee, J. Appl. Polym. Sci., 68, 1245(1998).
    124. S. D. Petris, P. Laur, J. Appl. Polym. Sci., 68, 637(1998).
    125. N. K. Kalfoglou, C. K. Samios and C. P. Papadopoulou, J. Appl. Polym. Sci., 68, 589(1998).
    126. P. Russo, D. Acierno, L. Di Maio, and G. Demma, European Polym. J., 35, 1261(1999).
    127. L. Incarnato, D. Acierno, P. Russo, M. Malinconico, and P. Laurienzo, J. of Polym. Sci.: Polym. Phys., 37, 2445(1999).
    128. J. M. Lagaron, E. Gimenez, R. Gavara, and J. J. Saura, Polymer, 42, 9531(2001).
    129. Z. Zhang, I. Britt, and M. A. Tung, J. of Appl. Polym. Sci., 82, 1866(2001).
    130. M. Muramatsu, M. Okura, K. Kuboyama, T. Ougizawa, T. Yamamoto, Y. Nishihara, Y. Saito, K. Ito, K. Hirata, and Y. Kobayashi, Radiation Physics and Chemistry, 68, 561(2003).
    131. Ren J, Silva A S, et al. Macromolecules, 33, 3739(2000)
    132. Giannelis E. P. Adv Mater., 8, 29(1996).
    133. Neilsen L. E. Macromlo J. Sci., Chem. A1, 929(1967).
    134. Sheanna bonner, B. Sabandith, W.Zhou, ANTEC 292 (2001).
    135. Unitika A. et al. J. Mater. Res., 8, 1179(1993).
    136. E. P. Socci, M. K. Akkapeddi and D. C. Worley, ANTEC, 1721(2001)
    137. Krishnamooriti R, et al. Macromolecules, 30, 4097(1997).
    138. Michael Alexandre, Philippe Dubois, Materials, Science and Engineer, 1, 28(2000).
    139. K. Yasue, S. Katahira, and M. Yoshikawa, Polymer-clay nanocomposites, T. J. Pinnavaia, and G. W. Beall, Eds, John Wiley& Sons, New York, 111(2000).
    140. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, and O. Kamigaito, J. of Appl. Polym. Sci., 49, 1259(1993).
    141. J. C. Matayabas JR, and S. R. Turner, Polymer-clay nanocomposites, T. J. Pinnavaia, and G. W. Beall, Eds, John Wiley& Sons, New York, 207(2000).
    142. 范姜建成,高分子工業, 33, 69(1979).
    143. L. Vermeiren, F. Devlieghere, Developments in the active packaging of foods, Trends in Food Science & Technology, 10, 77(1999).
    144. 黃認生, 脫氧劑的應用現狀與發展, 適用技術市場, 5, 3(1994).
    145. Y. Nasu and H. U. Chida, Deoxygenating composition, U.S. patent 4,836,952, (1989).
    146. E. Pesis, A. Levi and B. A. Ruth, Deastringency of persimmon fruits by creating at modified in Polyethylene bags, J. Food Sci., 51,1014(1986).
    147. M. L. Rooney, Oxygen scavenging from air in package headspaces by singlet oxygen reactions in polymer media. J. Food Sci., 47,291(1981).
    148. M. Rooney, R .V. Holland and Shorter, A. J. Potochemical removal of headspace oxygen by a singlet oxygen reaction, J. Sci. Food Agr., 32, 265(1981).
    149. M. Salame, The use barrier polymers in food and beverage packaging,in “Plastic films for packaging, technology, applications and process economics”. Ed. by C. J Benning , p. 132. Tech.Publishing Co. U. S. A, (1983).
    150. M. C. Gabrielle, Oxygen scavengers assume greater role in food package, Modern Plastics, 10, 73(1999).
    151. 李潔和,薄膜材料透氧性與食品包裝,食品工業,5, 14(1982).
    152. Japan Laminate Technical Association, Recent trend of laminating films, Packaging Japan, 1992, May: 51.
    153. Venkateshwaran and N. Lakshmi, U.S. Patent 5,744,056. (1998).
    154. S. Ohtsuka, T. Komatsu, Y. Kondoh and H. Takahashi, U.S. Patent 448, 513, 3(1984).
    155. L. Edens, et al, U.S. Patent 5,106,633(1992).
    156. B. D. Zenner, U.S. Patent 6,391,406(2002).
    157. T. Klein and D. Knorr, Journal of Food Science, 55: 869(1990).
    158. D. M. Miller, G. R. Buettner and S. D. Aust, Free Radic Biol. Med., 8, 95(1990)
    159. F. N. Teumac and B. D. Zenner, U.S. Patent 6,465,065(2002).
    160. E. Graf, Journal of Agriculture and Food Chemistry, 42, 1616(1994)
    161. G. O. Sayer, Food Australia, 43, 11(1991).
    162. D. M. Miller, G. R. Buettner and S. D. Aust, Free Radic Biol. Med., 8, 95(1990).
    163. L. B. Aaron, R. S. Eugene and R. K. Lauri, Active Packaging for Food
    164. D. M. Miller, G. R. Buettner and S. D. Aust, Free Radic Biol. Med., 8, 95(1990)
    165. J. P. Smith, H. S. Ramaswamy and B. K. Simpson, Trends Food Sci. Technol., 11, 111(1990).
    166. D. M. Miller, G. R. Buettner and S. D. Aust, Free Radic Biol. Med., 8, 95(1990).
    167. Y. Harima, Deoxidizer. Packaging Japan, 17, 57(1993).
    168. Y. Moriya, T. Komatsu and Y. Inoue, Deoxidizer sheet, U. S. patent 5,143,769(1992).
    169. H. Hatakeyama, Oxygen-absorben accommodation parcels. European patent 0,386,632 A2(1990).
    170. H. Hatakeyama and T. Kashiba, Package and packaging with oxygen absorbents, European Patent 0,329,897 A2(1989).
    171. H. Hatakeyama and T. Kashiba,Methods for treating food and a deoxidizer package in microwave oven, U. S. patent 4,996,068(1991).
    172. E. M. Powers, and D. Berkowitz, Efficiency of an oxygen scavenger to modify the atmosphere and prevent mold growth on meal, ready-to-eat pouched bread, J. Food Tech., 14, 149(1990).
    173. W. O. Ellis, B. K. Simpson, H. Ramaswany, and G. Doyon, Novel techniques for controlling the growth of and aflatoxin production by Aspergillus parasiticus in packaged peanuts. Food Micro., 11, 357(1994).
    174. S. Ma, and D. Kim, Effects of an in package oxygen scavenger on the stability of deep fried instant noodle, J. Korean of Food Sci. & Technol.,12 (4), 29(1980).
    175. Y. Junji, Trends in barrier design. Packaging Japan 1991, May: 30.
    176. Y. Morita, T. Komatsu and Y. Inoue, Oxygen scavenger container used for cap, U. S. patent 4,756,436(1998).
    177. L. Edens, F. Farin, A. F. Ligtvoet and J. B. Van derplaat, Food-grade oxygen scavenger for water congtaining products. European patent 0,305,005B1(1991).
    178. P. L. Zimmerman, L. J. Ernst, and W. F. Ossian, Scavenger pouch protects oxygen-sensitive foods. Food Tech., 28 (8), 63(1974).
    179. T. Komatsu and Y. Inoue, Deoxidizer film, European patent 0,367,390 A2(1990).
    180. S. Yamada, I. Sakuma, Y. Himeshima, T. Aoki, T. Uemura and A. Shirakura, Oxygen scavenger, European patent 0,466,515 A2(1991).
    181. D. C. Smith and B. McEnaney, The influence of dissolved oxygen concentration on the corrosion of gray cast iron in water at 50℃. Corros. Sci., 19, 379(1979).
    182. 郭美鑫, 氣密性塑膠包材的發展趨勢, 食品工業, 25(5), 43(1993).
    183. 廣惠章利, 本吉正信, 塑膠物性入門, 陳世春編譯, 複漢出版社, 台南(1992).
    184. T. Matsui, A. Ono, M. Shimoda, and Y. Osajima, Thermodynamic elucidation of depression mechanism on sorption of flavor compounds into electron beam irradiation LDPE and EVA films, J. Agric. Food Chem., 40, 479(1992).
    185. J. Miltz, and S. Ulitzur, A bioluminescence method for the determination of oxygen transmission rates through plastic films. J. Food Tech., 15, 389(1980).
    186. 鬱仁台, 實用塑膠學, 徐氏基金會, 臺北(1992).
    187. 高孟霞, 程琳娜, 食品保鮮新技術—脫氧劑保鮮, 食品科技, (1), 31(1995).
    188. 劉曉庚, 淺談脫氧劑在糧油食品中的應用, 糧油食品科技, 4,11(1995).
    189. 呂紹傑, 淺談脫氧劑用於食品保鮮, 中國食品添加劑, 3, 29(1997).
    190. M. Shigeyoshi, A. Tsunetoshi, A. Hidejiro, and T. Haruyoshi, Materials having a deoxidation function and a method of removing oxygen in sealed containers. European patent 0,349,662 AL(1998).
    191. E. Sinn, Inorganic chemistry of iron In “Chemistry of iron”. Blackie Academic & Professional Glasgow, UK, 46(1993).
    192. J. P. Smith, H. S. Ramaswamy and B. K. Simpson, Devopments in food packaging technology (11): Storage aspects. Trends in Food Sci. & Tech., Nov: 111(1990).
    193. M. Swisek, and S. Cerny, Active carbon: manufacture, properties and applications. Eisevier Pub. Co .New Pork,: 22(1970).
    194. H. C. Warmbier, and M. J. Wolf, A pouch for oxygen-sensitive products. Modern Packaging, 19 (7), 38(1976).
    195. Anon. Oxygen scavenger package stops oxidation extend shelf life. Food Processing, , 34 (9), 22(1973).
    196. P. L. Zimmerman, L. J. Ernst and W. F. Ossian, Food Technol., 28, 103(1974).
    197. S. Berenzon, and I. S. Saguy, Food Sci. Technol., 31, 1(1998).
    198. D. M. Miller, G. R. Buettner and S. D. Aust, Free Radic Biol. Med., 8, 95(1990).
    199. H. Nakamura and J. Hoshino, Techniques for the preservation of food by employment of an oxygen absorber, Technical information Mitsubishi Gas Chemical Co., Tokyo, Ageless Division, 1(1983).
    200. 張壽昌, 脫氧劑保存食物之效能, 食品工業, 13(2), 7(1981).
    201. 韓兆讓, 鐵系脫氧劑特性及在食品防氧包裝中的應用, 食品科學,1, 31(1995).
    202. 王廣建, 常俊石, 食品包裝中鐵系脫氧劑的研究應用, 無機鹽工業, 5, 40(1999).
    203. U. R. Evans, The corrosion and oxidation of metals: Scientific principles and practical applications, 2nd ed. Edwad Arnold. Landon, (1976).
    204. J. Kassim, T. Baird, and J. R. Fryer, Electron microscope studies of iron corrosion products in water at room temperature, Corros. Sci., 22, 147(1982).
    205. T. P. Labuza, Food Research, Cereal Food World., 32 (3), 276(1987).
    206. J. P. Lodge, Methods of air sampling and nanlysis, 3rd Ed. Lewis publishers. Michigan, U.S.A. (1980).
    207. K. Masataka, Present state of packaging printing process in Japan. Packing Japan 1989, Nov 1989: 34.
    208. T. Klein and D. Knorr, Oxygen absorption properties of power iron, J. Food Sci., 55 (3), 869(1990).
    209. E. Graf, Oxygen removal, U. S. Patent 5,284,871(1994).
    210. Inoue, Oxygen absorbent, U. S. Patent 4,908,151(1990).
    211. T. P. Labuza, and W. M. Breene, Applications of “active packaging” for improvement of shelf-life and nutritional quality of fresh and extended shelf-life foods. J. Food Process Pre., 13, 1(1989).
    212.Y. Inoue and T. Komatsu, Oxygen absorbent, U. S. patent 4,908,151, (1990).
    2-5 參考文獻
    1. J. T. Yeh, C. C. Chao and C. H. Chen, J. Appl. Polym. Sci., 76, 1997 (2000).
    2. J. T. Yeh, S. S. Huang, W. H. Yao, I. J. Wang and C. C. Chen, J. Appl. Polym. Sci., 92, 2528 (2004).
    3. S. A. Jabarin and W. J. Kollen, Polym. Eng. Sci., 28, 1156 (1988).
    4. M. R. Kamal, H. Garmabi, S. Hozhabr and L. Arghyris, Polym. Eng. Sci., 35, 41 (1995).
    5. P. M. Subramanian, U.S. Patent 4,410,482 (1983).
    6. P. M. Subramanian, U.S. Patent 4,444,817 (1984).
    7. C. A. Finch, Polyvinyl Alcohol, Wiley, New York, 1992. p. 258.
    8. W. J. Karos, Barrier Polymers and Structures, ACS Symposium Series 423, Amer. Chem. Soc. Ed., Washington, DC, 1990. p. 192.
    9. W. E. Brown, Plastics in Food Packaging, Marcel Dekker, New York, 1992. p.301.
    10. P. Russo, D. Acierno, L. D. Maio and G.. Demma, Europeam polym. J., 35, 1261 (1999).
    11. L. Incarnato, D. Acierno, P. Russo, M. Malinconico and P. Laurienzo, J. Polym. Sci., Polym. Phys. Ed., 37, 2445 (1999).
    12. J. T. Yeh, S. S. Huang and W. H. Yao, Macromol. Mater. Eng., 287, 532 (2002).
    13. J. T. Yeh, S. S. Yang, C. F. Jyan and S. Chou, Polym. Eng. Sci., 39, 1952 (1999).
    14. J. T. Yeh, C. C. Fan-Chiang and S. S. Yang, J. Appl. Polym. Sci., 64, 1531 (1997).
    15. J. T. Yeh, C. H. Chen and W. D. Shyu, J. Appl. Polym. Sci., 81, 2827 (2001).
    16. J. T. Yeh, S. S. Huang and W. H. Yao, Macromol. Mater. Eng., 287, 532 (2002).
    17. J. T. Yeh, S. S. Chang, H. T. Yao, K. N. Chen and W. S. Jou, J. Mater. Sci., 35, 1321 (2000).
    18. J. T. Yeh, W. H. Yao, Q. G. Du and C. C. Chen, J. Polym. Sci., Polym. Phys. Ed., 43, 511 (2005).
    19. J. T. Yeh, H. Y. Chen and F. C. Tsai, J. Appl. Polym. Sci., (In press).
    20. J. T. Yeh, W. H. Yao and C. C. Chen, J. Polym. Res., 12, 279 (2005).
    21. J. T. Yeh, S. S. Huang and H. Y. Chen, J. Appl. Polym. Sci., 97, 1333 (2005).
    22. J. T. Yeh, S. S. Huang and H. Y. Chen, Polym. Eng. Sci., 45, 25 (2005).
    23. J. M. Lagaron, E. Gimenez, J. J. Saura and R. Gavara, Polymer, 42, 7381 (2001).
    24. J. M. Lagaron, E. Gimenez, J. J. Saura and R. Gavara, Polymer, 42, 9531 (2001).
    25. D. R. Holmes, C. W. Bunn and D. J. Smith, J. Polym. Sci., 17, 159 (1955).
    26. M. Kyotani and S. Mitsuhashi, J. Polym. Sci., Polym. Phys. Ed., 10, 1497 (1972).
    27. M. L. Cerrada, E. Petez, J. M. Perena and R. Benavente, Macromolecules, 31, 2559 (1998).
    28. A. Romankiewicz, T. Sterzynski and W. Brostow, Polym Int, 53, 2086 (2004).
    29. F. Zhang, T. Endo, R. Kitagawa, H. Kabeya and T. Hirotsu, J. Mater. Chem., 10, 2666 (2000).
    30. D. J. Skrovanek, S. E. Howe, P. C. Paintern and M. M. Coleman, Macromolecules, 18, 1676 (1985).
    31. M. M. Coleman, X. Yang, H. Zhang, P. C. Painter, J. Macromol. Sci., Phys. Ed., 32, 295 (1993).
    32. E. J Moskala, D. F. Varnell and M. M. Coleman, Polymer, 26, 228 (1985).
    33. W. B. Person and G. Zerbi, Vibrational Intensities in Infrared and Ramam Spectroscopy, Elsevier, New York, 1982.
    3-5 參考文獻
    1. Jabarin, S. A.; Kollen, W. J Eng Sci 1988, 28, 1156.
    2. Kamal, M. R.; Garmabi, H.; Hozhabr, S.; Arghyris, L. Polym Eng Sci 1995, 35, 41.
    3. Subramanian PM. US Patent 4 410 482, 1983.
    4. Subramanian PM. US Patent 4 444 817, 1984.
    5. Finch, C.A. “Polyvinyl Alcohol”, John Wiley and Sons, New York, 1992.
    6. Karos, W.J. Barrier Polymers and Structures, ACS Symposium Series 423, Am. Chem. Soci. Washington, D.C., 1989.
    7. Finlayson, K. M. Plastic Film Technology: High Barrier Plastic Film for Packaging, Technomic Publishing Co., Lancaster, Pa., 1989.
    8. Schidknecht, C. E. In Vinyl and Related Polymers, 1st ed. John Wiley and Sons: New York, 1952 (Chapter 8).
    9. Wesseling, R. A. In Encyclopedia of Polymer Science and Technology, 1st ed.; John Wiley and Sons: New York, 1975(Chapter 14.3).
    10. Burnett, G. M.; Haldon, R.A. Eur Polym J 1968, 4, 83.
    11. Dolezel, B.; Pegoraro, M.; Beati, E. Eur Polym J 1970, 6, 1411.
    12. Wesseling, R. A. In Polyvinylidene Chloride, 1st ed. John Wiley and Sons: New York, 1977 (Chapter 9).
    13. Yeh, J. T.; Chen ,H. Y. J Mater Sci accepted for publication.
    14. Usuki, A.; Koiwai, A.; Kojima, Y.; Kawasumi, M.; Okada, A.; Kurauch, T.; Kamigaito, O. J. Appl. Polym. Sci., 1995, 55, 119.
    15. Okada, A.; Fukushima, Y.; Kawasumi, M.; Inagaki, S.; Usuki, A.; Sugiyama, S.; Kurauch, T.; Kamigaito, O. US Patent 4 739 007, 1988.
    16. Bharadwaj, R. K.; Mehrabi, A. R.; Hamilton, C.; Trujillo, C.; Murga, M.; Fan, R.; Chavira, A.; Thompson, A. K. Polymer 2002, 43, 3699.
    17. Krook, M.; Albertsson, A.C.; Gedde, U.W.; Hedenqvist, M.S. J Polym Eng Sci 2002, 42, 1238.
    18. Chang, J. H.; Park, K. M.; Cho, D.; Yang, H. S.; Ihn, K. J Polym Eng Sci 2001, 41, 1514.
    19. Sekelik, D. J.; Stepanov, E.V.; Nazarenko, S.; Schiraldi, D.; Hiltner, A.; Baer, E. J Polym Sci, Part B: Polym Phys 1999, 37, 847.
    20. Bissot, T.C. in Barrier Polymers and Structures; Koros, W. J. Ed.; American Chemical Society: D. C. Washington, 1990 (Chapter 11).
    21. Cussler, E. L.; Hughes, S. E.; Ward, W. J.; Aris, R. J Memb Sci 1988, 38, 161.
    22. Kojima, Y.; Usuki, A.; Kawasumi, M.; Okada, A.; Fukushima, Y.; Kurauchi, T.; Kamigaito, O. J Mater Res 1992, 8, 1185.
    23. Morgan, A. B.; Gilman, J. W.; Harris, R. H.; Jackson, C. L.; Wilkie, C. H.; Zhu, J. Polym Mater Sci Engn 2000, 83, 53.
    24. Kojima, Y.; Usuki, A.; Kawasumi, M.; Okada, A.; Kurauchi, T.; Kamigaito, O. J Appl Polym Sci 1993, 49, 1259.
    25. Michaels, A. S.; Chandrasekaran S. K.; Shaw, J. E. AICHE J. 1975, 21, 985.
    26. Wakeman, W. A.; Mason, E. A. Ind Engr Chem 1979, 18, 301.
    27. Falla, W. R.; Mulski, M.; Cussler. E. L. J Membrane Sci 1996, 119, 129.
    28. Yang, C. F.; Nuxoll, E. E.; Cussler, E. L. AICHE J 2001, 47, 295.
    29. Yeh, J. T.; Fan-Chiang, C. C.; Cho M. F. Polym Bull 1995, 35, 371.
    30. Yeh, J. T.; Fan-Chiang, C. C.; Yang, S.S. J Appl Polym Sci 1997, 64, 1531.
    31. Nielsen, L. E. J Macromol Sci 1967, A1, 929.
    32. Nakanishi, H.; Jean, Y. C.; Smith, E. G.; Sandreczki, T. C. J Polym Sci, Part B: Polym Phys 1989, 27, 1419.
    33. Nakanishi, H.; Wang, S.J.; Jean, Y. C. In Positron Annihilation in Fluids; Sharma, S. C. Ed.; World Scientific: Singapore, 1988, 753.
    34. Deng, Q.; Sundar, C. S.; Jean, Y. C. J Phys Chem 1992, 96, 492.
    35. Wang, Y. Y.; Nakanishi, H.; Jean, Y. C.; Sandreczki, T. C. J Polym Sci, Part B: Polym Phys 1990, 28, 1431.
    36. Crawford, R. J. Butterworth Heinemann, Plastics Engineering, 1998(Chapter 1).
    37. Yeh, J. T.; Yao, W. H.; Du, Q. G.; Chen, C. C. J Polym Sci, Part B: Polym Phys 2005, 43, 511.
    38. Liu, L.; Qi, Z.; Zhu, X. J Appl Polym Sci 1999, 71, 1133.
    39. Liu, X.; Wu, Q. Polymer 2002, 43, 1933.
    40. Beall, G. W. In: Pinnavaia TJ, Beall GW. , editors. Polymer-Clay Nanocomposites, New York: Wiley, 2001, p.269.
    41. Yeh, J. T.; Yao, W.H.; Chen, C. C. J Polym Res 2005, 12, 279.
    42. Polyakova, A.; Stepanov, E. V.; Schiraldi, D. A.; Hiltner, A.; Baer, E. J Polym Sci, Part B: Polym Phys 2001, 39, 1911.
    4-5 參考文獻
    [1] L. Vermeiren, F. Devlieghere, M. Van Beest, N. de Kruijf, J. Debevere, Trends in Food Science & Technology, 10, (1999) 77.
    [2] J. T. Yeh, S. S. Huang and W. H. Yao, Macromol. Mater. Eng., 287, (2002) 532.
    [3] J. T. Yeh, C. C. Fan-Chiang and M. F. Cho, Polym. Bull., 35, (1995) 371.
    [4] J. T. Yeh, C. C. Fan-Chiang and S. S. Yang, J. Appl. Polym. Sci., 64, (1997) 1531.
    [5] J. T. Yeh and C. C. Fan-Chiang, J. Appl. Polym. Sci., 66, (1997) 2517.
    [6] J. T. Yeh and C. C. Fan-Chiang , J. Polym. Res., 3, (1996) 211.
    [7] J. T. Yeh and C. F. Jyan, Polym. Eng. Sci., 38, (1998) 1482.
    [8] J. T. Yeh and C. C. Chao and C. H. Chen, J. Appl. Polym. Sci., 76, (2000) 1997.
    [9] J. T. Yeh, S. S. Chang, H. T. Yao, K. N. Chen and W. S. Jou, J. Mater. Sci., 35, (2000) 1321.
    [10] J. T. Yeh, S. S. Yang, C. F. Jyan and S. Chou, Polym. Eng. Sci., 39, (1999) 1952.
    [11] J. T. Yeh, S. S. Huang and H. Y. Chen, Polym. Eng. Sci., 45, (2005) 25.
    [12] J. T. Yeh, W. H. Yao, Q. G. Du and C. C. Chen, J. Polym. Sci. Polym. Phys. Ed., 43, (2005) 511.
    [13] J. T. Yeh, W. H. Shih, S. S. Huang, Macromol. Mater. Eng., 287, (2002) 23.
    [14] R. A. Wessling, Polyvinylidene Chloride, New York: Gorden and Breach Science Publishers, (1977).
    [15] Y. Inoue, and T. Komatsu, U.S. Patent (1990) 4,908,151.
    [16] M. C. Gabrielle, Modern Plastics, 76, (1999) 73.
    [17] P. L. Zimmerman, L. J. Ernst and W. F. Ossian, Food Technol., 28, (1974) 103.
    [18] S. Berenzon, and I. S. Saguy, Food Sci. Technol., 31, (1998) 1.
    [19] Venkateshwaran and N. Lakshmi, U.S. Patent (1998) 5,744,056.
    [20] C. J. Farrell and B. C. Tsai, U.S. Patent (1985) 4,536,409.
    [21] S. Ohtsuka, T. Komatsu, Y. Kondoh and H. Takahashi, U.S. Patent (1984) 448,513,3.
    [22] L. Edens, et al, U.S. Patent (1992) 5,106,633.
    [23] B. D. Zenner, U.S. Patent (2002) 6,391,406.
    [24] E. Graf, U.S. Patent (1994) 5,284,871.
    [25] M. L. Rooney, J. Food Sci., 47, (1981) 291.
    [26] H. Nakamura and J. Hoshino, Techniques for the preservation of food by employment of an oxygen absorber, Technical information Mitsubishi Gas Chemical Co., Tokyo, Ageless Division, (1983) 1.
    [27] T. Klein and D. Knorr, Journal of Food Science, 55, (1990) 869.
    [28] T. P. Labuza, Food Res., 32, (1987) 276.
    [29] F. N. Teumac and B. D. Zenner, U.S. Patent (2002) 6,465,065.
    [30] E. Graf, U.S. Patent (1993) 5,270,337.
    [31] E. Graf, Journal of Agriculture and Food Chemistry, 42, (1994) 1616.
    [32] G. O. Sayer, Food Australia, 43, (1991) 11.
    [33] T. P. Labuza, Food Science & Technology Today, 4, (1990) 53.
    [34] L. B. Aaron, R. S. Eugene and R. K. Lauri, Active Packaging for Food Application, Lancaster, Technomic Pub. Co., 2001
    [35] T. E. Graedel and R. P. Frankenthal, J. Electrochem. Soc., 137, (1990) 2385.
    [36] J. P. Smith, H. S. Ramaswamy and B. K. Simpson, Trends Food Sci. Technol. 11, (1990) 111.
    [37] D. C. Smith and B. McEnaney, Corrosion Science, 19, (1979) 379.
    [38] D. M. Miller, G. R. Buettner and S. D. Aust, Free Radic Biol. Med., 8, (1990) 95.
    參考文獻
    1. A. L. Brody, E. R. Strupinsky, L. R. Kline, “Active Packaging for Food Applications”, Technomic Publishing Company, Lancaster, Pennsylvania, USA(2002).
    2. L. Vermeiren, F. Devlieghere, M. Beest, N. Kruijf, J. Debevere, Trends in Food Science & Technology 10, 77(1999).
    3. R. Abbot, “Intelligent paper packaging unwrapped”, technical report.
    4. T. Labuza, “Inter Active Packaging Technologies”, in IFT Packaging Division Symposium, Anaheim, California(1995).
    5. R. A. Gross and B. Kalra, “Biodegradable Polymers for the Environment”, Science, 297, 803(2002).

    無法下載圖示 全文公開日期 2012/01/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE