簡易檢索 / 詳目顯示

研究生: 蔣明宏
Ming-Hing Chiang
論文名稱: 鐵銅鋁載氧體之動力分析及應用於固定床反應器化學迴路程序之評估研究
Kinetics Analysis of Fe2O3-CuO/Al2O3 Oxygen Carriers and Application to Fixed Bed Reactor for Chemical Looping Process
指導教授: 李豪業
Hao-Yeh Lee
顧 洋
Young Ku
口試委員: 李豪業
Hao-Yeh Lee
顧 洋
Young Ku
蔣本基
Pen-Chi Chiang
曾迪華
Dyi-Hwa Tseng
郭俞麟
Yu-Lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 103
中文關鍵詞: 化學迴路程序載氧體動力分析還原機制三階反應模型固定床
外文關鍵詞: Chemical looping process, Oxygen carriers, Kinetics analysis, Reduction mechanism, Third order reaction model, Fixed bed reactor
相關次數: 點閱:182下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本篇著重於鐵銅鋁載氧體之研究。首先,在不同鍛燒溫度下製造重量比為3:1:1之鐵銅鋁載氧體,其中以攝氏1200度鍛燒之載氧體擁有最佳的反應性、再利用性及機械強度測試,再分別利用氫氣及一氧化碳作為還原氣體與其在熱重分析儀裡反應,以利分析鐵銅鋁載氧體之還原動力。其中,在氫氣氣氛下,三階反應模型擁有最佳的擬合結果解釋載氧體之還原行為。在一氧化碳氣氛下還原之結果亦是如此。此外,透過固體狀態動力模型確認於氫氣下的淨反應為吸熱。相反地,於一氧化碳下之淨反應為放熱。透過X光繞射分析儀觀察鐵銅鋁載氧體於兩種不同還原氣氛下之還原機制。發現於兩種還原氣氛下,CuFe2O4的晶相會分解成Cu以及Fe3O4。
鍛燒於1200度下之鐵銅鋁載氧體用於固定床中做化學迴路燃燒程序,在900度下進行長時間還原之以利決定操作時間。隨後,在850至925度下進行燃燒效率之評估。結果顯示載氧體轉化率因反應溫度提升而提升。另一方面,鐵銅鋁載氧體鍛燒於1200度下之最佳操作溫度為925度。


In this study Fe2O3-CuO/Al2O3 oxygen carriers were be focused, various sintering temperatures were employed to fabricate the oxygen carriers. Fe2O3-CuO/Al2O3 oxygen carriers, which sintered at 1200°C, possess the optimal performance for reactivity test, recyclability test and mechanical test. In order to clearly understand the reduction kinetics, hydrogen and carbon monoxide as the reducing gas to react with FCA3112 respectively in thermogravmetric analyzer (TGA). Third order reaction (F3) model has the optimal fitting to describe the reduction of FCA3112 under hydrogen atmosphere. On the other hand, the same result was observed for the reduction of FCA3112 under carbon monoxide atmosphere. Moreover, the net reaction, which is verified by solid state model fitting for FCA3112 reduced by H2 atmosphere, is endothermic. By contrast, the net reaction is exothermic under CO atmosphere. Reduction mechanism of FCA3112 under either reducing gas was determined by X-ray diffraction (XRD). CuFe2O4 spinel decompose to Cu and Fe3O4 both at two kinds of reducing gas.
FCA3112 oxygen carriers were used for chemical looping combustion in fixed bed reactor. In order to determine the reduction time, long term reduction at 900°C was conducted. Subsequently, the combustion efficiency was evaluated at 850-925°C. Results shows the conversion of FCA3112 oxygen carriers increased when the reaction temperature is increased. On the other hand, the optimal reaction temperature is at 925°C for FCA3112 oxygen carriers.

Chinese abstract I Abstract III Acknowledgement V Contents VII List of figures X List of tables XIV List of symbols XVI Chapter 1 Introduction 1 1.1 Background 1 1.2 Objective and scope 2 Chapter 2 Literature and review 3 2.1 Chemical looping process (CLP) 3 2.1.1 Chemical looping combustion (CLC) 3 2.1.2 Chemical looping with oxygen uncoupling (CLOU) 7 2.1.3 Application of fixed bed reactor for chemical looping process 9 2.2 Selection and characteristics of oxygen carriers 11 2.2.1 Selection of oxygen carriers for CLP 11 2.2.2 Characteristic of Fe2O3-CuO oxygen carriers 14 2.3 Reaction models 16 2.3.1 General equations 16 2.3.2 Solid states reaction models 17 Chapter 3 Experimental apparatus and procedures 21 3.1 Materials 21 3.2 Apparatus 22 3.3 Experimental procedures 23 3.3.1 Experimental framework 23 3.3.2 Preparation of oxygen carriers 28 3.3.3 Characterization analysis of oxygen carriers 30 3.3.4 System of chemical looping process 33 3.3.5 Data evaluation 37 Chapter 4 Results and discussions 38 4.1 Background experiment 38 4.1.1 Characterization analysis of Fe2O3-CuO/Al2O3 oxygen carriers 38 4.1.2 Reactivity analysis of Fe2O3-CuO/Al2O3 oxygen carriers 41 4.2 Reactivity of Fe2O3-CuO/Al2O3 oxygen carriers for H2 combustion 47 4.2.1 Effect of sintering temperature 47 4.2.2 Effect of reaction temperature 49 4.2.3 Kinetics analysis of oxygen carriers for H2 combustion 53 4.2.4 Reduction mechanism of FCA3112 for H2 combustion 67 4.3 Reactivity of Fe2O3-CuO/Al2O3 oxygen carriers for CO combustion 70 4.3.1 Effect of sintering temperature 70 4.3.2 Effect of reaction temperature 72 4.3.3 Kinetics analysis of oxygen carriers for CO combustion 76 4.3.4 Reduction mechanism of FCA3112 for CO combustion 90 4.4 Combustion of FCA3112 oxygen carriers with syngas in fixed bed 93 4.4.1 Long term reduction of FCA3112 oxygen carriers in fixed bed 93 4.4.2 Effect of reaction temperature 96 Chapter 5 Conclusions and recommendations 97 References 99

Adánez, J., Abad, A., Perez-Vega, R., de Diego, L.F., García-Labiano, F., Gayán, P., “Design and Operation of a Coal-fired 50 kWth Chemical Looping Combustor” Energy Procedia Vol. 63, pp. 63-72 (2014).
Azimi, G., Leion, H., Rydén, M., Mattisson, T., Lyngfelt, A., “Investigation of Different Mn–Fe Oxides as Oxygen Carrier for Chemical-Looping with Oxygen Uncoupling (CLOU)” Energy & Fuels Vol.27, pp. 367-377 (2013).
Bayham, S., McGiveron, O., Tong, A., Chung, E., Kathe, M., Wang, D., Zeng, L., Fan, L. S., “Parametric and Dynamic Studies of an Iron-based 25-kWth Coal Direct Chemi cal Looping Unit using Sub-bituminous Coal,” Appl. Energy Vol. 145, pp. 354-363 (2015).
Berguerand, N., Lyngfelt, A., “Design and Operation of a 10 kWth Chemical-Looping Combustor for Solid Fuels – Testing with South African Coal” Fuel Vol. 87, pp. 2713-2726 (2008).
Bi, H.T., Grace, J.R., “Flow Regime Diagrams for Gas-Solid Fluidization and Upward Transport” Int. J. Multiphase Flow Vol. 21, pp. 1229-1236 (1995).
Bohn, C. D., Muller, C. R., Cleeton, J. P., Hayhurst, A. N., Davidson, J. F., Scott, S. A., Dennis, J. S., “Production of Very Pure Hydrogen with Simultaneous Capture of Carbon Dioxide using the Redox Reactions of Iron Oxides in Packed Beds” Ind. Eng. Chem. Res. Vol. 47, pp. 7623-7630 (2008).
Chen, J.A., “Bimetallic Iron-Copper Composite Oxygen Carriers for Chemical Looping Combustion and Hydrogen Generation” Master’s Thesis, National Taiwan University of Science and Technology, Taiwan Taipei (2015).
Chung, C., Pottimurthy, Y., Xu, M., Hsieh, T.L., Xu, D., Zhang, Y., Chen, Y.Y., He, P., Pickarts, M., Fan, L.S., Tong, A., “Fate of Sulfur in Coal-Direct Chemical Looping Systems” Appl. Energy Vol. 208, pp. 678-690 (2017).
de Diego, L.F., García -Labianoa, F., Adánez, J., Gayán, P., Abad, A., Corbella, B.M., Palacios, J.M., “Development of Cu-based Oxygen Carriers for Chemical-Looping Combustion” Fuel Vol. 83, pp. 1749-1757 (2004).
Fan, L.S., Li, F. “Chemical Looping Technology and Its Fossil Energy Conversion Applications” Ind. Eng. Chem. Res. Vol. 49, pp. 10200–10211 (2010).
Fernández J.R., Alarcón J.M., “Chemical Looping Combustion Process in Fixed-Bed Reactors using Ilmenite as Oxygen Carrier: Conceptual Design and Operation Strategy” Chem. Eng. J. Vol. 264, pp. 797–806 (2015).
Gayán, P., Adánez-Rubio, I., Abad, A., de Diego, L.F., García -Labianoa, F., Adánez , J., “Development of Cu-based Oxygen Carriers for Chemical-Looping with Oxygen Uncoupling (CLOU) Process” Fuel Vol. 96, pp. 226-238 (2012).
Hossain, M.M., de Lasa, H.I., “Chemical-Looping Combustion (CLC) for Inherent CO2 Separations—a Review” Chem. Eng. Sci. Vol. 63, pp. 4433-4451 (2008).
Johnsson F., Leckner B., “Vertical distribution of solids in a Circulating Fluidized Bed Furnace” United States (1995).
Kang, K.S., Kim, C.H., Cho, W.C., Bae, K.K., Woo, S.W., Park, C.S., “Reduction Characteristics of CuFe2O4 and Fe3O4 by Methane; CuFe2O4 as An Oxidant for Two-Step Thermochemical Methane Reforming” Int. J. Hydrogen Energy Vol.33, pp. 4560-4568 (2008).
Ksepko, E., Łabojko, G., “Effective Direct Chemical Looping Coal Combustion with Bi-metallic Fe–Cu Oxygen Carriers Studied using TG-MS Techniques” Journal of Thermal Analysis and Calorimetry Vol.117, pp.151-162 (2014).
Kim, H. R., Wang, D., Zeng, L., Bayham, S., Tong, A., Chung, E., Kathe, M.V., Luo, S., McGiveron, O., Wang, A., Sun, Z., Chen, D., Fan, L.S., “Coal Direct Chemical Looping Combustion Process: Design and Operation of a 25kWth Sub-pilot Unit” Fuel Vol. 108, pp. 370-384 (2013).
Leiona, H., Mattisson, T., Lyngfelt, A., “Using Chemical-Looping with Oxygen Uncoupling (CLOU) for Combustion of Six Different Solid Fuels” Energy Procedia Vol. 1, pp. 447–453 (2009).
Liu, W., Ismail M., Dunstan, M.T., Hu, W.T., Zhang, Z.L., Fennell, P.S., Scott, S.A., Dennis, J.S., “Inhibiting the Interaction Between FeO and Al2O3 During Chemical Looping Production of Hydrogen” RSC Adv. Vol.5, pp.1759-1771 (2015).
Luo, S., Bayham, S., Zeng, L., McGiveron, O., Chung, E., Majumder, A. and Fan, L. S., “Conversion of Metallurgical Coke and Coal Using a Coal Direct Chemical Looping (CDCL) Moving Bed Reactor,” Appl. Energy Vol. 118, pp. 300-308 (2014).
Lyngfelt, A., Leckner, B., “A 1000 MWth Boiler for Chemical-Looping Combustion of Solid” Appl. Energy Vol. 157, pp. 475-487 (2015).
Mattisson, T., Johansson, M., Lyngfelt, A., “Multicycle Reduction and Oxidation of Different Types of Iron Oxide Particles-Application to Chemical-Looping Combustion” Energy & Fuels Vol. 18, pp. 628-637 (2004).
Mattisson, T., Lyngfelt, A., Leion, H., “Chemical-Looping with Oxygen Uncoupling for Combustion of Solid Fuels” Int. J. Greenhouse Gas Control Vol. 3, pp. 11-19 (2009).
Ma, J., Zhao, H.B., Tian, X., Wei, Y,J., Zhang, Y.L., Zheng, C.G., “Continuous Operation of Interconnected Fluidized Bed Reactor for Chemical Looping Combustion of CH4 using Hematite as Oxygen Carrier” Energy & Fuels Vol. 29, pp. 3257-3267 (2015).
Mendiara, T., Izquierdo, M.T., Abad, A., de Diego, L.F., García Labiano, F., Gayán, P., Adánez, J., “Release of Pollutant Components in CLC of Lignite” Int. J. Greenhouse Gas Control Vol. 22, pp. 15–24 (2014).
Moghtaderi, B., “Review of the Recent Chemical Looping Process Developments for Novel Energy and Fuel Applications” Energy & Fuels Vol. 26, pp. 15-40 (2012).
Rubel, A., Liu, K., Neathery, J., Taulbee, D., “Oxygen Carriers for Chemical Looping Combustion of Solid Fuels” Fuel Vol. 88, pp. 876-884 (2009).
Selvan, R.K., Augustin, C.O., Berchmans, L.J., Saraswathi, R., “Combustion Synthesis of CuFe2O4” Mater. Res. Bull. Vol. 38, pp. 41–54 (2003).
Shafiefarhood, A., Stewart, A., Li, F., “Iron-Containing Mixed-Oxide Composites as Oxygen Carriers for Chemical Looping with Oxygen Uncoupling (CLOU)” Fuel Vol. 139, pp.1-10 (2015).
Shin, H.C., Choi, S.C., “Mechanism of M Ferrites (M = Cu and Ni) in the CO2 Decomposition Reaction” Chem. Mater. Vol.13, pp.1238-1242 (2001).
Siriwardane, R., Tian, H.J., Simonyi, T., Poston, J., “Synergetic Effects of Mixed Copper–Iron Oxides Oxygen Carriers in Chemical Looping Combustion” Fuel Vol. 108, pp.319-333 (2013a).
Siriwardane, R., Ksepko, E., Tian, H.J., Poston, J., Simonyi, T., Sciazko, M., “Interaction of Iron–Copper Mixed Metal Oxide Oxygen Carriers with Simulated Synthesis Gas Derived from Steam Gasification of Coal” Appl. Energy Vol.107, pp.111-123 (2013b).
Siriwardane, R., Tian, H.J., Miller, D., Richards, G., “Fluidized Bed Testing of Commercially Prepared MgO-promoted Hematite and CuO–Fe2O3 Mixed Metal Oxide Oxygen Carriers for Methane and Coal Chemical Looping Combustion” Appl. Energy Vol.157, pp.348-357 (2015).
Wang, B.W., Gao C.C., Wang, W.S., Zheng, C.G., “Chemical Looping Combustion of Coal with CuO-Fe2O3 Mechanically Mixed Oxygen Carrier” Procedia Engineering Vol. 16, pp.48-53 (2011a).
Wang, B.W., Yan, R., Zhao, H.B., Zheng, Y., Liu, Z.H., Zheng, C.G., “Investigation of Chemical Looping Combustion of Coal with CuFe2O4 Oxygen Carrier” Energy Fuels Vol.25, pp.3344–3354 (2011b).
Wei, G.Q., He, F., Huang, Z., Zhao, K., Zheng, A.Q., Li, H.B., “Chemical-Looping Reforming of Methane Using Iron Based Oxygen Carrier Modified with Low Content Nickel” Chin. J. Chem. Vol. 32, pp.1271–1280 (2014).
Wu, H.C., “Performance Evaluation of Fe2O3/Al2O3/TiO2 Oxygen Carriers for Chemical Looping Process by Moving Bed” Ph.D.’s Thesis, National Taiwan University of Science and Technology, Taiwan Taipei (2018).
Noorman S., van Sint Annaland, M., Kuipers H., “Packed Bed Reactor Technology for Chemical-Looping Combustion” Ind. Eng. Chem. Res. Vol. 46, pp. 4212-4220 (2007).

QR CODE