簡易檢索 / 詳目顯示

研究生: 劉庭瑋
Ting-Wei Liu
論文名稱: 應用垂直擋板抑制矩槽液體潑濺行為實驗研究與分析
Experimental study and analysis of vertical baffle mitigation effect on liquid sloshing in the rectangular tanks
指導教授: 柴駿甫
Jyun-Fu Chai
口試委員: 許丁友
Ding-You Syu
林凡茹
Fan-Ru Lin
徐瑋鴻
Wei-Hong Syu
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 212
中文關鍵詞: 對流模態方矩形儲槽潑濺水高電容式波高計擋板
外文關鍵詞: convective mode, square and rectangular tanks, sloshing - height, capacitive wave gauge, baffle plate
相關次數: 點閱:143下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有鑑於日本福島第一核電廠事故,核電廠內之用過燃料池液體被潑濺至燃料池外,使燃料棒無法冷卻,造成此事故原因之一,故本研究將大型儲槽縮尺模擬成核電廠之用過燃料池進行試驗,希望透過加裝擋板之耐震策略降低儲槽內液體潑濺,並且能夠應用於工業儲槽,為了解儲存液體大型儲槽安裝垂直擋板是否有效降低潑濺高度,本研究透過振動台試驗探討分析擋板參數對於液體之潑濺高度、頻率,及阻尼比之關係。本研究將介紹試驗中採用之擋板設計及規劃、擋板的受力變形分析和模態分析結果;採用電容式波高計量測動態水位,作為本次數據分析的重要儀器,並透過一系列的波高計測試及使用方法以了解波高計的性能及操作。
    本研究探討方形和矩形儲槽在不同水深下,垂直擋板相關參數對於液體潑濺高度、對流模態頻率及阻尼比之影響,擋板參數包括;擋板插入深度、擋板與儲槽壁間距、擋板開孔特徵,經由實驗數據分析及整理,可歸納出擋板對於儲槽內液體潑濺行為的影響,提出垂直擋板各參數應用於矩槽之建議。


    In light of the Fukushima Daiichi nuclear power plant incident in Japan, where used fuel pool coolant was splashed outside the fuel pool, leading to inadequate cooling of the fuel rods and contributing to the accident, this study aims to conduct scaled experiments using a large storage tank to simulate a used fuel pool in a nuclear power plant. The goal is to investigate the effectiveness of seismic strategies involving the installation of baffle plates to mitigate liquid splashing within the tank.
    To determine whether the installation of vertical baffle plates in large liquid storage tanks is effective in reducing splashing heights, this research employs vibration table experiments to analyze the relationship between baffle plate parameters and splashing height, frequency, and damping ratio of the liquid. The study presents the design and planning of the baffle plates used in the experiments, along with the analysis of baffle plate deformation under load and modal analysis results.
    Dynamic water levels are measured using capacitive wave gauges, which serve as essential instruments for data analysis. A series of wave gauge tests and methodologies are employed to assess the performance and operation of the wave gauges.
    This study explores the impact of various parameters of vertical baffle plates on liquid splashing height, convection mode frequency, and damping ratio for both square and rectangular tanks at different water depths. The baffle plate parameters include insertion depth, distance from tank wall, and opening characteristics. Through analysis and organization of experimental data, the study draws conclusions regarding the influence of baffle plates on liquid splashing behavior within the storage tank, providing recommendations for the application of vertical baffle plate parameters in rectangular tanks.

    摘要 iv ABSTRACT ii 致謝 iv 目錄 v 表目錄 vii 圖目錄 ix 符號說明 xvii 第一章 緒論 1 1.1 研究背景及目的 1 1.2 研究內容 1 第二章 文獻回顧 4 2.1 儲槽液體潑濺行為相關研究 4 2.2 儲槽耐震補強相關研究 10 2.3 儲槽相關規範 12 第三章 實驗設計 22 3.1 振動台實驗配置 22 3.1.1 實驗試體設計與配置 22 3.2 擋板設計及分析 23 3.2.1 擋板設計 23 3.2.2 擋板模態分析及側向力分析 25 3.3 儀器校正試驗 27 3.3.1 波高計介紹 28 3.3.2 波高計測試及結果 29 3.4 輸入波設計 32 第四章 振動台試驗之結果與討論 61 4.1 液體對流之頻率分析與比較 61 4.2 液體對流之潑濺水高分析與比較 65 4.3 液體對流之阻尼比分析與比較 69 4.4 小結 71 第五章 結論與未來展望 135 5.1 結論 135 5.2 試驗建議與未來展望 137 附錄A矩槽頻率及說明 138 附錄B 最大潑濺高度比較圖 166 附錄C 矩槽阻尼比 173 參考文獻 190

    1. 維基百科, 東日本大震災。 檢自https://zh.wikipedia.org/zh-tw/ (Aug 25,2023)
    2. Housner, G. W. (1963). The Dynamics Behavior of Water Tanks. Bulletin of the Seismological Society of America, 53(2), pp. 381-387.
    3. Graham, E. W., & Rodriguez, A. M. (1952). The Characteristics of Fuel Motion Which Affect Airplane Dynamics. American Society of Mechanical Engineers. Journal of Applied Mechanics, 19(3), pp. 381–388.
    4. Chen, W., Haroun, M. A., & Liu, F. (1996). Large Amplitude Liquid Sloshing in Seismically Excited Tanks. Earthquake Engineering and Structural Dynamics, 25, pp. 653-669.
    5. Ibrahim, R. A. (2005). Liquid Sloshing Dynamics: Theory and Applications. Cambridge University Press. doi:10.1017/CBO9780511536656.
    6. The Electric Power Research Institute (2013). Seismic Evaluation Guidance: Screening, Prioritization and Implementation Details for the Resolution of Fukushima Near-Term Task Force Recommendation 2.1: Seismic. Electric Power Research Institute Report, 1025287.
    7. Goudarzi, M. A., Sabbagh-Yazdi, S. R., & Marx, W. (2010). Investigation of sloshing damping in baffled rectangular tanks subjected to the dynamic excitation. Bull Earthquake Engineering, 8, pp. 1055–1072.
    8. Tkachenko, O. Y., Kazachkov, A. R., Lykah, V. A., Minakova, K. A., & Syrkin, E. S. (2015). Dynamics of oscillation processes in siphon U-tubes. Bulletin of Kharkiv National University, 23, pp. 84-90.
    9. 沈亮(2020)。剛性矩槽貯水受震之對流模態反應研究。碩士論文,國立臺灣科技大學。
    10. 何宇文(2021)。二維輸入震波對剛性方槽儲存液體之對流模態效應研析。碩士論文,國立臺灣科技大學。
    11. 高翊鈞(2022)。矩槽受震引致儲存液體潑濺體積之簡化模擬評估。碩士論文,國立臺灣科技大學。
    12. 柴駿甫、林凡茹、徐瑋鴻(2019)。儲槽近斷層效應試驗研究-試驗規劃。國家地震工程研究中心,中心精簡報告。
    13. Trifunac M. D., & Brady A. G. (1975). A study on the duration of strong earthquake ground motion. Bulletin of the Seismological Society of America, 65(3), pp. 581–626.

    QR CODE