簡易檢索 / 詳目顯示

研究生: 紀佃霖
Dian-Lin Ji
論文名稱: CES柱與傳統SRC柱之耐震行為研究
Study on the Seismic Behavior of Concrete Encased Steel (CES) Columns and Traditional Steel Reinforced Concrete (SRC) Columns
指導教授: 邱建國
Chien-Kuo Chiu
口試委員: 邱建國
Chien-Kuo Chiu
廖文義
Wen-I Liao
張惠雲
Heui-Yung Chang
吳東諭
Tung-Yu Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 257
中文關鍵詞: 纖維混凝土複合纖維包覆型鋼骨鋼筋混凝土柱複合結構構造性能
外文關鍵詞: fiber-reinforced concrete, composite fibers, concrete-encased steel columns, composite structures, structural performance
相關次數: 點閱:321下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討在鋼骨鋼筋混凝土(SRC)柱構件中添加混合纖維的效果,以利用
    纖維的橋接效應來控制混凝土裂縫發展,並抑制混凝土保護層的脆性破壞。同時,本
    研究也觀察了結構的耐震行為,並探討放寬箍筋用量的可能性,以解決密集配筋所帶
    來的挑戰,達到簡化設計及施工之目的。
    根據材料試驗結果,我們得出以下結論:纖維混凝土(FRC)的抗壓強度、抗彎強
    度和工作性受到纖維用量、水膠比和減水劑用量的影響,需根據不同配比條件進行調
    整以達到最佳配比。在具有相同抗壓強度的圓柱試體中,觀察到 FRC 可以抑制試體
    的脆性破壞。
    對四組包覆型 SRC 柱進行了結構試驗,以研究其在橫向反覆載荷下的耐震行為。
    前兩組試體用於比較傳統 SRC 和新型 SRC 之間的鋼骨圍束差異,而其餘兩組試體則
    以新型 SRC 斷面為基準,使用纖維材料替代鋼筋。其中一組完全替代主筋與箍筋
    (CES),另一組則將新型 SRC 的箍筋間距放大至柱斷面邊長的一半(20 公分)。
    實驗結果顯示添加纖維對混凝土裂縫發展具有良好的抑制效果,使塑鉸區的裂縫
    呈現細小分散狀態。遲滯迴圈分析顯示所有試體呈現飽滿紡錘形,其中 CES 柱展現
    出卓越的耗能容限。強度衰退分析顯示 CES 柱具有一定的回復能力與耐久性。構件
    勁度分析顯示 CES 柱能更好地抵抗外力,減少變形和損壞,提供較高的結構安全性
    和穩定性。此外,CES 柱和 NSRC 柱具有較高的延展性,可在受載荷時進行可控的變
    形並發出警告信號。等效黏滯阻尼比模型分析顯示 CES 柱在受大變形時具有更高的
    耗能容限。基於以上結果,FRC 材料在一定程度上有助於 SRC 柱構件舒緩配筋,甚
    至可能完全取代鋼筋使用。該研究結果對國內 SRC 規範改進提供建議與參考,結合
    FRC 材料的應用,有望允許在箍筋用量上進行折減。


    This study investigates the effects of adding hybrid fibers to Steel Reinforced Concrete
    (SRC) column elements to control crack development and suppress brittle failure of the
    concrete cover using fiber bridging effect. It also examines the seismic behavior of the
    structure and explores the possibility of reducing transverse reinforcement for simplified
    design and construction.
    Structural tests on four groups of concrete-encased steel columns were conducted to
    study their seismic behavior under lateral cyclic loading. Two groups compared conventional
    SRC and the new type of SRC's steel confinement, while the other two used the new SRC
    section as a reference, replacing steel reinforcement with fiber materials.
    Experimental results show that adding fibers effectively inhibits concrete crack
    development, resulting in fine and dispersed cracks in the plastic hinge region. Hysteretic
    loop analysis indicates all specimens exhibit full and slender loops, with CES columns
    demonstrating excellent energy dissipation capacity. CES columns also show certain
    recovery capability and durability in strength degradation analysis. Component stiffness
    analysis shows CES columns better resist external forces, reducing deformation and damage
    and providing higher structural safety and stability. Additionally, CES and NSRC columns
    display higher ductility, enabling controlled deformation and issuing warning signals during
    loading. The equivalent viscous damping ratio model analysis demonstrates CES columns
    have higher energy dissipation capacity under significant deformations. Based on these
    findings, FRC materials contribute to relaxing reinforcement requirements for SRC column
    elements and may even replace steel reinforcement entirely.

    致謝................................................................................................................................I 摘要.............................................................................................................................. II Abstract......................................................................................................................III 目錄.............................................................................................................................IV 表目錄......................................................................................................................VIII 圖目錄...........................................................................................................................X 第一章 緒論............................................................................................................... 17 1.1 研究背景與動機......................................................................................... 17 1.2 研究方法與目的......................................................................................... 22 1.3 論文大綱..................................................................................................... 24 第二章 文獻回顧....................................................................................................... 26 2.1 SRC 柱相關研究文獻 ................................................................................ 26 2.1.1 Ricles et al. (1994) ...................................................................... 26 2.1.2 翁正強及王暉舜等人 (2006) .................................................... 27 2.1.3 陳正誠及毛宗傑 (2006) ............................................................ 28 2.1.4 陳正誠及詹鎧慎 (2012) ............................................................ 29 2.1.5 高橋宏行等人 (2000) ................................................................ 30 2.1.6 藤本利昭等人 (2009) ................................................................ 32 2.1.7 石鈞吉及倉本洋等人 (2013) .................................................... 36 2.2 SRC 柱相關設計規範 ................................................................................ 39 2.2.1 美國 ACI 設計規範.................................................................... 39 2.2.2 美國 AISC 設計規範.................................................................. 40 2.2.3 國內 TW-SRC 設計規範............................................................ 40 2.2.4 日本 AIJ-CES 規範 .................................................................... 42 2.3 纖維混凝土力學行為................................................................................. 45 2.3.1 Naaman (1972)............................................................................ 45 2.3.2 Naaman (1996)............................................................................ 46 2.3.3 松戸正士等人 (2005) ................................................................ 48 2.3.4 陳玉龍及林昌佑 (2017) ............................................................ 49 2.3.5 Zhu Yuan, Yanmin Jia (2021)...................................................... 49 第三章 FRC 材料試驗與結果.................................................................................. 51 3.1 FRC 配比設計 ............................................................................................ 51 3.2 試體製作與養護......................................................................................... 58 3.3 試驗步驟與方法......................................................................................... 59 3.4 試驗結果與分析......................................................................................... 64 第四章 試驗設計與規劃........................................................................................... 72 4.1 試體設計參數............................................................................................. 72 4.2 柱圍束箍筋用量設計................................................................................. 77 4.3 SRC 鋼骨寬厚比限制 ................................................................................ 80 4.4 試體製作流程............................................................................................. 81 4.4.1 XH 鋼骨加工製作...................................................................... 81 4.4.2 場地整平與放樣......................................................................... 82 4.4.3 基礎鋼筋籠組立......................................................................... 82 4.4.4 鋼骨定位與鋼筋綁紮................................................................. 83 4.4.5 基礎模板組立與混凝土澆置..................................................... 84 4.4.6 柱底打毛與柱模板組立............................................................. 84 4.4.7 柱體混凝土澆置......................................................................... 85 4.4.8 頂部鋼筋籠組立......................................................................... 86 4.4.9 頂部模板組立與混凝土澆置..................................................... 87 4.5 試驗配置..................................................................................................... 88 4.5.1 試體基礎鎖固............................................................................. 91 4.5.2 水平方向施力系統..................................................................... 91 4.5.3 軸力系統..................................................................................... 92 4.6 量測系統..................................................................................................... 93 VI 4.6.1 內部應變計................................................................................. 93 4.6.2 外部位移計................................................................................. 96 4.6.3 影像量測系統............................................................................. 97 4.7 試驗流程..................................................................................................... 98 4.7.1 試驗觀察與量測......................................................................... 98 4.7.2 試驗程序..................................................................................... 99 第五章 試驗結果分析與討論................................................................................. 102 5.1 材料試驗結果........................................................................................... 102 5.1.1 混凝土抗壓試驗....................................................................... 102 5.1.2 鋼筋拉伸試驗........................................................................... 108 5.1.3 鋼板拉伸試驗............................................................................111 5.2 結構試驗之軸力荷載與基礎滑移............................................................115 5.2.1 軸力變化....................................................................................115 5.2.2 基礎滑移....................................................................................116 5.3 結構試驗測試結果....................................................................................118 5.3.1 裂縫發展與破壞模式................................................................118 5.3.2 遲滯迴圈與包絡線................................................................... 129 5.3.3 斷面彎矩強度轉換................................................................... 137 5.3.4 勁度與強度衰退(Stiffness and strength degradation).............. 142 5.3.5 延展性與能量耗散容量........................................................... 146 5.3.6 等效黏滯阻尼比(Equivalent viscous damping ratio)............... 149 第六章 結論與建議................................................................................................. 151 6.1 結論........................................................................................................... 151 6.2 建議........................................................................................................... 153 參考文獻................................................................................................................... 154 附錄 A 混凝土配比試算表..................................................................................... 159 附錄 B 各試體設計圖說......................................................................................... 161 附錄 C 應變計圖..................................................................................................... 173 附錄 D 各試體試驗過程損傷與裂縫發展情形..................................................... 183 附錄 E 軟體斷面分析報告書(CSiCol) .................................................................. 240

    [1] C.-W. Roeder. Overview of hybrid and composite systems for seismic design in the
    United States. Eng Struct, 20 (1998), pp. 355-363
    [2] S. Morino. Recent developments in hybrid structures in Japan—research, design and
    construction. Eng Struct, 20 (4-6) (1998), pp. 336-346
    [3] E. Ellobody, B. Young. Investigation of concrete encased steel composite col-umns at
    elevated temperatures. Thin Walled Struct, 48 (8) (2010), pp. 597-608
    [4] S. Li, J.Y.R. Liew, M.-X. Xiong. Prediction of fire resistance of concrete encased steel
    composite columns using artificial neural network. Eng Struct, 245 (2021), Article
    112877
    [5] Khan M.K.I., Rana M.M., Zhang Y.X., Lee C.K. Compressive behaviour of eng-ineered
    cementitious composites and concrete encased steel composite columns. J. Constr. Steel
    Res., 167 (2020), Article 105967
    [6] C.-C. Chen, N.-J. Lin. Analytical model for predicting axial capacity and behavior of
    concrete encased steel composite stub columns. J Constr Steel Res, 62 (5) (2006), pp.
    424-433
    [7] 陳正誠、詹鎧慎 “含軸壓力包覆型鋼骨鋼筋混凝土柱之撓曲行為” 國立台灣科技
    大學營建工程所 碩士論文;2012.
    [8] B. Lai, J.Y.R. Liew. Axial-moment interaction of high strength concrete encased steel
    composite columns: design recommendation. J. Constr. Steel Res., 170 (2020), Article
    106136
    [9] B. Lai, J.Y. Richard Liew, M. Xiong. Experimental study on high strength conc-rete
    encased steel composite short columns. Constr Build Mater, 228 (2019), Article 116640
    [10] 劉光晏、梁文哲 “高強度鋼筋及聚丙烯纖維高強度混凝土受高溫後的強度與彈性
    模數之研究” 國立成功大學土木工程研究所 碩士論文 ; 2018.
    [11] Wang, Qingbiao, et al. "Experimental study on the performance of graded glass fiber
    reinforced concrete (G-GRC) based on engineering application." Materials 14.5 (2021):
    1149.
    [12] Ahmad, Jawad, et al. "Glass fibers reinforced concrete: overview on mechanical,
    durability and microstructure analysis." Materials 15.15 (2022): 5111.
    [13] Liu, Jinliang, Yanmin Jia, and Jun Wang. "Experimental study on mechanical and
    durability properties of glass and polypropylene fiber reinforced concrete." Fib-ers and
    Polymers 20 (2019): 1900-1908.
    [14] A. Venkateshwaran, B.-L. Lai, J.Y.R. Liew. Buckling resistance of steel fibre-reinforced
    concrete encased steel composite columns. J. Constr. Steel Res., 190 (2022), Article
    107140
    [15] Carrasquillo, Ramon L., Arthur H. Nilson, and Floyd O. Slate. "Properties of high
    strength concrete subjectto short-term loads." Journal Proceedings. Vol. 78. No. 3. 1981.
    [16] 鈴木卓, and 松井智哉. "H 形鉄骨を内蔵した CES 柱の MS モデルを用いた構
    造解析モデル." 日本建築学会構造系論文集 84.761 (2019): 993-1000.
    [17] 足立智弘. "繊維補強コンクリートを用いた鉄骨コンクリート合成構造柱の弾塑
    性性状に関する実験的研究." 日本建築学会大会学術講演梗概集, C1, 2002. 9
    (2002).
    [18] 藤本利昭, and 大崎広貴. "内蔵鉄骨形状の異なる CES 部材の構造性能に関する
    実験的研究." 日本建築学会構造系論文集 83.752 (2018): 1507-1515.
    155
    [19] 陳玉龍, 林昌佑, and 劉光晏. 含聚丙烯纖維高強度鋼筋混凝土柱受圍束之應力與
    應變關係. Diss. 2017.
    [20] 足立, et al. "2049 高軸力を受ける繊維補強コンクリート-鋼合成構造柱の構造性
    能に関する研究 (柱)." コンクリート工学年次論文集 25.2 (2003): 289-294.
    [21] 日本建築学会:鉄骨コンクリート(CES)造建物の性能評価型構造設計指針(案)・
    同解説,第 1 版第 1 刷,2022.3
    [22] 洪崇展, et al. "新世代多功能性混凝土材料-高性能纖維混凝土." 土木水利 44.1
    (2017): 33-51.
    [23] 廖文正, 詹穎雯 “高強度混凝土品質及控制 與添加鋼纖維之應用” 高強度鋼筋混
    凝土 (New RC)結構設計手冊研討會, 台北, Dec. 11, 2015
    [24] 歐昱辰、鍾智翔 “包覆型 SRC 柱箍筋耐震設計需求之構架試驗研究” 國立台灣
    科技大學營建工程所 碩士論文;2014.
    [25] Vignesh, P., A. R. Krishnaraja, and N. Nandhini. "Study on mechanical prope-rties of geo
    polymer concrete using m-sand and glass fibers." International Journal of Innovative
    Research in Science, Engineering and Technology 3.2 (2014): 110.
    [26] Kumar, Dinesh, et al. "High performance glass fiber reinforced concrete." Mat-erials
    Today: Proceedings 33 (2020): 784-788.
    [27] Prathipati, SRR Teja, et al. "A study on the fiber distribution characteristics of hybrid
    fiber reinforced high strength concrete with steel and glass fibers." Materials Today:
    Proceedings 43 (2021): 962-969.
    [28] Zhu, Zhende, et al. "A statistical damage constitutive model based on the Weibull
    distribution for alkali-resistant glass fiber reinforced concrete." Materials 12.12 (2019):
    1908.
    [29] Shi, Zhenyue, Qingbiao Wang, and Lei Xu. "Experimental study of cement alkali￾resistant glass fiber (C-ARGF) grouting material." Materials 13.3 (2020): 605.
    [30] Ma, Shaochun, et al. "Influence of alkali-resistant glass fiber on seismic performance of
    precast ceramsite concrete sandwich wall panels." Structures. Vol. 38. Elsevier, 2022.
    [31] Ali, Babar, Liaqat Ali Qureshi, and Rawaz Kurda. "Environmental and economic
    benefits of steel, glass, and polypropylene fiber reinforced cement composite application
    in jointed plain concrete pavement." Composites Communications 22 (2020): 100437.
    [32] He, Jiayuan, et al. "The mechanical properties and damage evolution of UHPC
    reinforced with glass fibers and high-performance polypropylene fibers." Materials 14.9
    (2021): 2455.
    [33] Kizilkanat, Ahmet B., et al. "Mechanical properties and fracture behavior of basalt and
    glass fiber reinforced concrete: An experimental study." Construction and Building
    Materials 100 (2015): 218-224.
    [34] Yuan, Zhu, and Yanmin Jia. "Mechanical properties and microstructure of glass fiber and
    polypropylene fiber reinforced concrete: An experimental study." Construction and
    Building Materials 266 (2021): 121048.
    [35] Yao, Wu, Jie Li, and Keru Wu. "Mechanical properties of hybrid fiber-reinforced
    concrete at low fiber volume fraction." Cement and concrete research 33.1 (2003): 27-
    30.
    [36] 李暁赫, et al. "各種繊維の混入が超高強度コンクリートのフレッシュ性状および
    力学性状に及ぼす影響とその評価方法の検討." 日本建築学会技術報告集 27.66
    (2021): 592-597.
    156
    [37] Chen, Yu-Lung. 含聚丙烯纖維高強度鋼筋混凝土柱受圍束之應力與應變關係. Diss.
    國立交通大學, 2017.
    [38] Zhao, Qingxin, et al. "Effect of fiber types on creep behavior of concrete." Construction
    and Building Materials 105 (2016): 416-422.
    [39] Abid, Sallal R., et al. "Hydro-abrasive resistance of engineered cementitious composites
    with PP and PVA fibers." Construction and Building Materials 187 (2018): 168-177.
    [40] Wu, Fan, et al. "Improvement of mechanical properties in polypropylene-and glass-fibre￾reinforced peach shell lightweight concrete." Advances in Materials Science and
    Engineering 2018 (2018): 1-11.
    [41] Akand, Lutfur, Mijia Yang, and Xinnan Wang. "Effectiveness of chemical treatment on
    polypropylene fibers as reinforcement in pervious concrete." Construction and Building
    Materials 163 (2018): 32-39.
    [42] Chandramouli, K., et al. "Strength properties of glass fiber concrete." ARPN journal of
    Engineering and Applied sciences 5.4 (2010): 1-6.
    [43] Deshmukh, S. H., J. P. Bhusari, and A. M. Zende. "Effect of glass fibers on ordinary
    Portland cement concrete." IOSR journal of engineering 2.6 (2012): 1308-1312.
    [44] Ravikumar, C. Selin, and T. S. Thandavamoorthy. "Glass fibre concrete: Investigation on
    Strength and Fire Resistant properties." IOSR Journal of Mechanical and Civil
    Engineering 9.3 (2013): 2320-334.
    [45] Arunakanthi, E., and JD Chaitanya Kumar. "Experimental studies on fiber reinforced
    concrete (FRC)." International Journal of Civil Engineering and Technology 7.5 (2016):
    329-336.
    [46] Liu, Jinliang, Yanmin Jia, and Jun Wang. "Experimental study on mechanical and
    durability properties of glass and polypropylene fiber reinforced concrete." Fibers and
    Polymers 20 (2019): 1900-1908.
    [47] Malek, Marcin, et al. "Mechanical and material properties of mortar reinforced with
    glass fiber: An experimental study." Materials 14.3 (2021): 698.
    [48] Lv, Yan, He-ming Cheng, and Zhi-guang Ma. "Fatigue performances of glass fiber
    reinforced concrete in flexure." Procedia Engineering 31 (2012): 550-556.
    [49] Hemalatha, S., and A. Leema Rose. "An experimental study on Glass fiber reinforced
    concrete." Int. Res. J. Eng. Technol 3 (2016): 2285-2289.
    [50] Murthy, Yogesh Iyer, Apporv Sharda, and Gourav Jain. "Performance of glass fiber
    reinforced concrete." International journal of engineering and innovative technology 1.6
    (2012).
    [51] 陳正誠、毛宗傑,(2006),「SRC 柱混凝土與鋼骨交互影響之探討」,碩士論文,
    國立臺灣科技大學營建工程研究所,台北。
    [52] Ricles, James M., and Shannon D. Paboojian. "Seismic performance of steel-encased
    composite columns." Journal of Structural Engineering 120.8 (1994): 2474-2494.
    [53] 陳正誠、沈家豪,(2010),「鋼骨鋼筋混凝土柱塑性轉角容量之研究」,碩士論文,
    國立臺灣科技大學營建工程研究所,台北。
    [54] 翁正強、王暉舜、李讓、梁景裕 (2006)「鋼骨鋼筋混凝土柱圍束箍筋量之試驗與
    耐震設計」,結構工程,第二十一卷,第三期,pp. 55-83,中華民國結構工程學
    會,九月,台北。
    [55] Ghugal, Yuwaraj M., and Santosh B. Deshmukh. "Performance of alkali-resistant glass
    fiber reinforced concrete." Journal of reinforced plastics and composites 25.6 (2006):
    617-630.
    157
    [56] 廖文正, 林致淳, and 詹穎雯. "台灣混凝土彈性模數建議公式研究." 結構工程 31.3
    (2016): 5-31.
    [57] 內政部建築研究所 “鋼骨鋼筋混凝土構造設計規範與解說”; 2011
    [58] 內政部建築研究所 “混凝土結構設計規範”; 2021
    [59] 邱建國、湯騏壑,(2020),「高強度鋼筋混凝土柱之裂縫控制設計研究」,碩士論
    文,國立臺灣科技大學營建工程研究所,台北。
    [60] Yao, Gangfeng, Bingyi Li, and Xueyu Xiong. "Deformation capacity of flexural￾controlled SRC columns under lateral cyclic load." Soil Dynamics and Earthquake
    Engineering 169 (2023): 107902
    [61] 松戸正士, 西田浩和, and 片寄哲務. "超高強度材料を用いた鉄筋コンクリート柱
    の耐火性に関する研究." フジタ技術研究報告 41 (2005): 31-36.
    [62] Naaman, Antoine E. A statistical theory of strength for fiber reinforced concrete. Diss.
    Massachusetts Institute of Technology, 1972.
    [63] Naaman, A. E., and H. W. Reinhardt. "Characterization of high performance fiber
    reinforced cement composites—HPFRCC." High performance fiber reinforced cement
    composites. Vol. 2. 1996.
    [64] American Society of Civil Engineers. "Seismic evaluation and retrofit of existing
    buildings." American Society of Civil Engineers, 2017.
    [65] GB 50011–-2010 (2016 Version) “Code for Seismic Design of Buildings[S]” China
    Architecture & Building Press, Beijing (2016)
    [66] 周中哲、劉郁芳、周德光、黃司睿、陳蓮安,「鋼骨鋼筋混凝土構造設計規範柱及
    接合設計之修正研擬」,內政部建築研究所,十二月,台北 (2021)。
    [67] Priestley, MJ Nigel, Frieder Seible, and Gian Michele Calvi. Seismic design and retrofit
    of bridges. John Wiley & Sons, 1996.
    [68] Q.C. ShenStudy on limit value of axial compression ratio of steel reinforced high
    strength concrete column. Master Dissertation Chongqing University, Chongqing (2006).
    [69] .黃冠傑. "鋼筋混凝土柱耐震圍束之研究." (2013): 1-270.
    [70] American Institute of Steel Construction."Seismic Provisions for Structural Steel
    Buildings”. Chicago (IL): AISC Inc.; 2016.
    [71] American Society of Civil Engineering. "Seismic rehabilitation of existing buildings."
    American Society of civil engineers, 2007.
    [72] 彭耀南、廖國裕,(2003),「混凝土中骨材與水泥漿界面處過渡區性質與耐久性之
    研究」,碩士論文,國立台灣交通大學土木工程研究所,新竹。
    [73] 翁正強,顏聖益,林俊昌 (1998),「包覆型 SRC 柱鋼骨對混凝土圍束箍筋量之影
    響」,中國土木水利工程學刊,第十卷,第二期,pp. 193-204,民國八十七年六
    月,台北。
    [74] 王榮進、翁正強、陳誠直、施祖涵、王琳、林意晴 (2009)「鋼骨鋼筋混凝土構造
    (SRC)設計規範之檢討修訂」,強化災害防救科技研發與落實運作方案成果研討
    會,行政院災害防救委員會,七月,台北。
    [75] 王榮進、翁正強 (2008)「鋼骨鋼筋混凝土構造(SRC)設計規範之檢討修訂」,內政
    部建築研究所研究報告,十二月,台北。
    [76] Yao, Gangfeng, Bingyi Li, and Xueyu Xiong. "Deformation capacity of flexural￾controlled SRC columns under lateral cyclic load." Soil Dynamics and Earthquake
    Engineering 169 (2023): 107902.
    158
    [77] Ghugal, Yuwaraj M., and Santosh B. Deshmukh. "Performance of alkali-resistant glass
    fiber reinforced concrete." Journal of reinforced plastics and composites 25.6 (2006):
    617-630.
    [78] 石鈞吉, et al. "H 型鉄骨内蔵 CES 柱の復元力特性のモデル化に関する研究." 日
    本建築学会構造系論文集 78.693 (2013): 2019-2026.
    [79] 高橋, et al. 3180 高靱性型セメント材料を用いた鉄骨コンクリート構造柱の復元
    力特性に関する実験的研究 (合成・混合構造). コンクリート工学年次論文集
    22.3 (2000) 1075-1080.
    [80] 朱江. "聚丙烯纤维混凝土在路面工程中的应用研究." 混凝土 12 (2000): 8-10.
    [81] 藤本利昭, 倉本洋, and 松井智哉. "交差 H 型断面鉄骨を内蔵した CES 柱の構造
    性能, 第 8 回複合・合成構造の活用に関するシンポジウム講演集." (2009).
    [82] 日本建築学会:鉄骨鉄筋コンクリート構造計算規準・同解説,第 6 版,2014.1

    無法下載圖示
    全文公開日期 2026/08/08 (校外網路)
    全文公開日期 2026/08/08 (國家圖書館:臺灣博碩士論文系統)
    QR CODE