簡易檢索 / 詳目顯示

研究生: Uswatun Hasanah
Uswatun Hasanah
論文名稱: 基於深度學習演算法的多標籤胸部X光分類研究
A study of Multilabel Chest X-Ray classification based on Deep Learning Algorithms
指導教授: 呂政修
Jenq-Shiou Leu
口試委員: 鄭瑞光
Ray-Guang Cheng
周承復
Cheng-Fu Chou
黃文吉
Wen-Jyi Hwang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 68
外文關鍵詞: Multilabel chest X-Ray, diseases, deep learning, chest classification
相關次數: 點閱:36下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Chest X-Rays have been used in most studies for multilabel disease classification and are the main resource for medical image analysis. Chest X-Ray images are obtained utilizing penetration imaging technology, which produces multiple levels of characteristics in an image as opposed to natural images. As a result, it is challenging to identify a disease's characteristics for further diagnosis. In practice, the proportion of healthy persons outnumbers those with various diseases, and the abilities of those diseases vary. Therefore, the labels are unbalanced. Two major challenges of diagnosis through chest X-ray images are extracting discriminative features from X-ray images and handling imbalanced data distribution. The preprocessing method is intended to overcome the issue of imbalanced data distribution.

    This research uses modified DenseNet169, called, DenseNet-Proposed1, DenseNet-Proposed2, DenseNet-Proposed3, DenseNet-Proposed4, and DenseNet-Proposed5 for the classification of multilabel chest X-Ray. We evaluate our proposed models using different loss functions, namely Binary Cross entropy (BCE) and Weighted Cross Entropy (WCE) loss. In addition, we also compared our proposed model with other 6 standard deep learning models, i.e. DenseNet121, DenseNet169, DenseNet201, ResNet50, MobileNetV2, and Xception. Utilizing the National Institute of Health (NIH) ChestXray14 dataset, we evaluate the effectiveness of our algorithm against the other cutting-edge approaches for classifying pathologies.

    The major comparison is to examine the results between classifiers using the Area Under the Curve (AUC), precision, recall, F1-score, and accuracy. Finally, we conclude that DenseNet-Proposed3 with WCE loss achieved the best performance when compared to other methods. We observe an extensive range outcome in our proposed model, where Hernia received the model's highest AUC of 0.979, in contrast, Infiltration received the lowest AUC of 0.678.

    Chapter 1 Introduction 1 1.1 Background 1 1.2 Related Work 3 1.3 Research Objective 7 1.4 Thesis Development 8 Chapter 2 Literature Review 9 2.1 DenseNet 9 2.2 ResNet 10 2.3 MobileNet 14 2.4 Xception 16 Chapter 3 Propose Method 18 3.1 Image Preprocessing 19 3.2 Proposed Model 20 Chapter 4 Experiments 23 4.1 Dataset 23 4.2 Experiment Implementation 26 4.3 Hyperparameters 27 4.4 Performance Metrics 27 Chapter 5 Results and Discussion 30 5.1 Comparison with other deep learning models 30 5.1.1 Comparison of evaluation metrics 30 5.1.2 Comparison of Area Under the Curve 38 5.2. Comparison with different loss function 51 5.3. Visualization Results 55 Chapter 6 Conclusions 57 6.1 Conclusions 57 6.2 Future Work 57 References 58

    [1] T. Agrawal and P. Choudhary, “Segmentation and classification on chest radiography: a systematic survey,” Vis. Comput., vol. 39, no. 3, pp. 875–913, 2022, doi: 10.1007/s00371-021-02352-7.
    [2] S. Candemir and S. Antani, “A review on lung boundary detection in chest X-rays,” Int. J. Comput. Assist. Radiol. Surg., vol. 14, no. 4, pp. 563–576, 2019, doi: 10.1007/s11548-019-01917-1.
    [3] H. Sharma, J. S. Jain, P. Bansal, and S. Gupta, “Feature extraction and classification of chest X-ray images using CNN to detect pneumonia,” Proc. Conflu. 2020 - 10th Int. Conf. Cloud Comput. Data Sci. Eng., pp. 227–231, 2020, doi: 10.1109/Confluence47617.2020.9057809.
    [4] A. Giełczyk, A. Marciniak, M. Tarczewska, and Z. Lutowski, “Pre-processing methods in chest X-ray image classification,” PLoS One, vol. 17, no. 4 April, pp. 1–11, 2022, doi: 10.1371/journal.pone.0265949.
    [5] G. Litjens et al., “A survey on deep learning in medical image analysis,” Med. Image Anal., vol. 42, no. 1995, pp. 60–88, 2017, doi: 10.1016/j.media.2017.07.005.
    [6] S. Palani, A. Kulkarni, A. Kochara, and K. M, “Detection of Thoracic Diseases using Deep Learning,” ITM Web Conf., vol. 32, p. 03024, 2020.
    [7] T. Ching et al., Opportunities and obstacles for deep learning in biology and medicine, vol. 15, no. 141. 2018.
    [8] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers, “ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 3462–3471, 2017, doi: 10.1109/CVPR.2017.369.
    [9] J. Irvin et al., “CheXpert: A large chest radiograph dataset with uncertainty labels and expert comparison,” 33rd AAAI Conf. Artif. Intell. AAAI 2019, 31st Innov. Appl. Artif. Intell. Conf. IAAI 2019 9th AAAI Symp. Educ. Adv. Artif. Intell. EAAI 2019, pp. 590–597, 2019, doi: 10.1609/aaai.v33i01.3301590.
    [10] A. E. W. Johnson et al., “MIMIC-CXR-JPG, a large publicly available database of labeled chest radiographs,” vol. 14, pp. 1–7, 2019, [Online]. Available: http://arxiv.org/abs/1901.07042.
    [11] A. Bustos, A. Pertusa, J. M. Salinas, and M. de la Iglesia-Vayá, “PadChest: A large chest x-ray image dataset with multilabel annotated reports,” Med. Image Anal., vol. 66, pp. 1–35, 2020, doi: 10.1016/j.media.2020.101797.
    [12] F. Ahmad, A. Farooq, and M. U. Ghani, “Deep Ensemble Model for Classification of Novel Coronavirus in Chest X-Ray Images,” vol. 2021, 2021.
    [13] I. Allaouzi and M. Ben Ahmed, “A Novel Approach for Multilabel Chest X-Ray Classification of Common Thorax Diseases,” IEEE Access, vol. 7, pp. 64279–64288, 2019, doi: 10.1109/ACCESS.2019.2916849.
    [14] L. Seyyed-Kalantari, G. Liu, M. McDermott, I. Y. Chen, and M. Ghassemi, “CheXclusion: Fairness gaps in deep chest X-ray classifiers,” Pac. Symp. Biocomput., vol. 26, pp. 232–243, 2021, doi: 10.1142/9789811232701_0022.
    [15] I. M. Baltruschat, H. Nickisch, M. Grass, T. Knopp, and A. Saalbach, “Comparison of Deep Learning Approaches for Multilabel Chest X-Ray Classification,” Sci. Rep., vol. 9, no. 1, pp. 1–11, 2019, doi: 10.1038/s41598-019-42294-8.
    [16] J. Xu, H. Li, and X. Li, “MS-ANet: deep Learning for Automated Multilabel Thoracic Disease Detection and Classification,” PeerJ Comput. Sci., vol. 7, pp. 1–12, 2021, doi: 10.7717/PEERJ-CS.541.
    [17] M. S. Majdi, K. N. Salman, M. F. Morris, N. C. Merchant, and J. J. Rodriguez, “DEEP LEARNING CLASSIFICATION OF CHEST X-RAY IMAGES,” 2020 IEEE Southwest Symp. Image Anal. Interpret., pp. 116–119, 2020.
    [18] G. A. Shadeed, M. A. Tawfeeq, and S. M. Mahmoud, “Deep learning model for thorax diseases detection,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 18, no. 1, pp. 441–449, 2020, doi: 10.12928/TELKOMNIKA.v18i1.12997.
    [19] Z. Ge, D. Mahapatra, S. Sedai, R. Garnavi, and R. Chakravorty, “Chest X-rays Classification: A Multilabel and Fine-Grained Problem,” pp. 1–9, 2018, [Online]. Available: http://arxiv.org/abs/1807.07247.
    [20] A. S. Pillai, “Multilabel Chest X-Ray Classification via Deep Learning,” J. Intell. Learn. Syst. Appl., vol. 14, no. 04, pp. 43–56, 2022, doi: 10.4236/jilsa.2022.144004.
    [21] D. Bhusal and D. S. P. Panday, “Multilabel Classification of Thoracic Diseases using Dense Convolutional Network on Chest Radiographs,” pp. 1–11, 2022, [Online]. Available: http://arxiv.org/abs/2202.03583.
    [22] Z. Ge, D. Mahapatra, X. Chang, Z. Chen, L. Chi, and H. Lu, “Improving multilabel chest X-ray disease diagnosis by exploiting disease and health labels dependencies,” Multimed. Tools Appl., vol. 79, no. 21–22, pp. 14889–14902, 2020, doi: 10.1007/s11042-019-08260-2.
    [23] X. Xu, Q. Guo, J. Guo, and Z. Yi, “DeepCXray: Automatically diagnosing diseases on chest x-rays using deep neural networks,” IEEE Access, vol. 6, pp. 66972–66982, 2018, doi: 10.1109/ACCESS.2018.2875406.
    [24] H. Wang and Y. Xia, “ChestNet: A Deep Neural Network for Classification of Thoracic Diseases on Chest Radiography,” pp. 1–8, 2018, [Online]. Available: http://arxiv.org/abs/1807.03058.
    [25] S. Xu, H. Wu, and R. Bie, “CXNet-m1: Anomaly Detection on Chest X-Rays with Image-Based Deep Learning,” IEEE Access, vol. 7, pp. 4466–4477, 2019, doi: 10.1109/ACCESS.2018.2885997.
    [26] P. Rajpurkar et al., “CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning,” pp. 3–9, 2017, [Online]. Available: http://arxiv.org/abs/1711.05225.
    [27] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 2261–2269, 2017, doi: 10.1109/CVPR.2017.243.
    [28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 770–778, 2016, doi: 10.1109/CVPR.2016.90.
    [29] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” 2017, [Online]. Available: http://arxiv.org/abs/1704.04861.
    [30] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 1800–1807, 2017, doi: 10.1109/CVPR.2017.195.
    [31] M. L. Zhang and Z. H. Zhou, “A review on multilabel learning algorithms,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 8, pp. 1819–1837, 2014, doi: 10.1109/TKDE.2013.39.
    [32] R. Venkatesan and M. J. Er, “Multilabel classification method based on extreme learning machines,” 2014 13th Int. Conf. Control Autom. Robot. Vision, ICARCV 2014, pp. 619–624, 2014, doi: 10.1109/ICARCV.2014.7064375.

    QR CODE