簡易檢索 / 詳目顯示

研究生: 詹肇裕
Chan Chao-Yu
論文名稱: 太陽光電技術應用於建築設計之評估與策略研究
The Evaluation and Strategy of Photovoltaic Technology Applied in Building Design
指導教授: 鄭政利
Cheng-Li Cheng
口試委員: 賴榮平
Rong-Ping Lai
周家鵬
Chia-Peng Chou
魏浩揚
Hao-Yang Wel
林慶元
Ching-Yuan Lin
彭雲宏
Yeng-Horng Perng
學位類別: 博士
Doctor
系所名稱: 設計學院 - 建築系
Department of Architecture
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 105
中文關鍵詞: 設計策略斜面日射建築整合太陽光發電太陽光電技術效益評估
外文關鍵詞: slope irradiation, building integrated with PV (BIPV), Photovoltaic (PV), evaluation, design strategy
相關次數: 點閱:462下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

論文摘要
太陽光發電是潔淨的再生能源之一,相關之研究與應用在國內正逐步受到重視,日射量與系統效率是影響太陽光發電效益之重要因素。國內外有關日射量推估與太陽光發電應用設計評估之研究,過去已有多位學者提出不同之日射量推估模式與發電量推估式,然而,多數之推估模式在應用上有其解析操作之複雜性與地域上之差異性;太陽光發電應用設計策略亦會影響其系統發電運轉效率。
本研究係從建築設計利用太陽光電技術之觀點,試圖建立一簡易應用之「斜面日射比值推估式」,應用此推估式可以推估建築外殼太陽光發電設備之發電量,評估系統發電效益。並且,提出建築設計應用太陽光發電之策略評估模式,探尋適用太陽光發電之建築空間與設備以及適用方式,以提升發電效益,提供做建築設計整合應用太陽光電技術之策略。同時,也累積地區日射量與太陽光發電資料提供設計參考。
首先,分析斜面日射理論,引用國內即有之弦式理論日射量推估資料,本研究依實測經驗修正與分析該資料,建立「全年南至東向方位斜面日射比值推估式」與「逐月南向斜面日射比值推估式」;以日射實測結果驗證此推估式應用於台灣地區之準確程度,並且與國外LIN氏比值推估式比較。其次,係應用斜面日射比值推估式與太陽光發電量計算式,推估太陽光發電設備發電量;並以發電實測結果驗證發電量推估結果,評估建築外殼太陽光發電設備之發電效益。再其次,係分析適用太陽光發電之建築特性,建立建築空間與設備應用獨立型太陽光發電之策略評估模式。以大學校園建築為例,分析相關評估因子,擬定評估基準;探尋適用太陽光發電直接應用之空間型態與設備種類。最後,建立太陽光發電設備實體模型,驗證建築空間與設備利用太陽光發電之適用性。
所建立之「全年南至東向方位斜面日射比值推估式」與「逐月南向斜面日射比值推估式」,經實測驗證結果,推估值與實測值之判定係數R2分別是0.993與0.965;顯示此二推估式在應用上俱有某程度之準確性。太陽光發電量推估驗證結果,其推估之準確程度則低於日射比值推估,某一程度上尚可提供做為概估太陽光發電之參考。
所建立建築空間與設備應用太陽光發電之策略評估模式,提出採光不良之居室空間與低功率設備分別是適用太陽光發電之空間與設備。最後,以台灣科技大學校園建築為例,操作建築應用太陽光發電之策略評估模式,建立太陽光發電照明與市電併用之系統模型,分析系統運轉性能,驗證此適用方式之可行性。建築適用太陽光發電之評估模式與太陽光發電照明實體模型,可提供做為建築整合應用太陽光電技術之設計策略。


ABSTRACT
Photovoltaic (PV) is a clean and renewable energy. The research and application of PV are gradually paid attention in Taiwan. Irradiation and performance of PV system are important to PV benefit. Different estimative models of irradiation had been proposed by investigators. Some of the models are complicated in calculation with locality, and the strategy of PV application affects the performance of system.
The purpose of the research is to build a simplify method, by means of the equations of slope irradiation ratios, for easily evaluating the PV power transformed by modules on building envelope. Developing an evaluation model of strategy for PV application on building can find the applicable space and equipment and suitable use type. Simultaneously, the local irradiation and PV operation can be recorded.
Firstly, an estimative equation of annual slope irradiation ratio and an estimative equation of monthly south slope irradiation ratio were built by analyzing the theories of slope irradiation and a set of previous irradiation data which has not yet been verified. The estimative equations were validated by measure and were compared with previous LIN-estimative model. Secondly, the equations of slope irradiation ratio were used to estimate PV power in building, and the estimation was verified by experiment. Thirdly, an evaluative model of strategy for PV appliction in buildings was formed by analyzing the process of PV planning. Taking the campus buildings for instance, the factors analysis and criteria were adopted for finding the applicable space and equipment and suitable use type for PV. Finally, the evaluative model was validated by experiment and the suitable type of PV was proposed.
The results of validation of the estimated equation were presented by correlation analysis between estimate values and measure values. The R2 are 0.993 and 0.9648 respectively with good results. The validation results show that the estimation of PV power has less accurate than the estimation of slope irradiation ratio. The equations and estimation can be a reference for evaluating PV application in building.
The results of evaluative model of strategy for PV application show that the applicable spaces are inadequate daylight and the applicable equipments are low consumption for PV application. The evaluative model of PV applicability was performed in building of NTUST campus to find the suitable PV power consumer. A PV interior lighting integrated with grid lighting system were achieved and proposed as suitable use type of BiPV. The evaluative model of PV applicability and the suitable use type can be a strategy of BIPV technology applied in building design.

TABLE OF CONTENTS NOMENCLATURE………………………………………………………………………Ⅸ LIST OF FIGURES……………………………………………………………………ⅩⅡ LIST OF TABLES……………..………………………………………………………ⅩⅤ 1. INTRODUCTION 1.1 Background and motivation………………………………………………...1 1.2 Purposes………………………………………………………………………..3 1.3 Objectives and scope………………………………………………………...4 1.4 Method and structure……………………………………………………….. 4 2. LITERATURE REVIEW 2.1 Photovoltaic planning in buildings…………………………………………7 2.2 Estimate for slope irradiation……………………………………………….9 2.2.1 Estimate of slope irradiation in overseas……..…………………….9 2.2.2 Estimate of slope irradiation in Taiwan………..…………………..10 2.3 Estimate of PV power for building……………………….………………..11 2.3.1 Estimate of PV power in overseas…………………………………11 2.3.2 Estimate of PV power in Taiwan…………………...………………12 2.4 Evaluation of PV benefit………………………….…………………………12 2.4.1 Evaluation of PV benefit in overseas…………...……………...…12 2.4.2 Evaluation of PV benefit in Taiwan……………..…………………13 2.5 Application of BIPV……………………………………………….…………13 3. ESTIMATIVE MODELS 3.1 Theories for estimate of slope irradiation……………………………….14 3.1.1 Cosine model for hourly irradiation………………………………14 3.1.2 Lin’s estimate for slope irradiation ratio………………….………16 3.2 Estimate of annual slope irradiation ratio…………………….…………18 3.2.1 Definition and process………………………………………….…18 3.2.2 Modification of irradiation data……………………………………19 3.2.3 Analysis of annual irradiation data………………………….……23 3.2.4 Equation of annual slope irradiation ratio…………………….... 26 3.3 Estimate of monthly south slope irradiation ratio………………..……29 3.3.1 Definition and process…………………………………….………29 3.3.2 Modification of irradiation data……………………………………30 3.3.3 Analysis of monthly irradiation data…………………...…………35 3.3.4 Equation of monthly south slope irradiation ratio………….……35 3.4 Estimate of PV power in building……………………………….…..……39 3.4.1 Estimate power output from module..…..……………….………39 3.4.2 Estimate power output from PV system……….…………..……40 3.5 Summary……………….……………………………………………………..40 4. VERIFICATION OF MODELS 4.1 Measure of irradiation………..……………………………………………..42 4.1.1 Measure system. ……………………….…………………………42 4.1.2 Measure results in HWH………………….………………………44 4.1.3 Measure results in NTUST………………..………………………47 4.2 Verification for estimate of annual slope irradiation ratio……………49 4.2.1 Validation by annual irradiations in HWH…………………….…49 4.2.2 Validation by annual irradiations in NTUST…………………..…51 4.3 Verification for estimate of monthly south slope irradiation ratio.…52 4.3.1 Validation of monthly estimate by the research………………...52 4.3.2 Validation of Lin-estimate…………………………………..…….56 4.3.3 Comparison of the monthly estimate with Lin’s……….….….…58 4.4 Measure of PV power…………………………………………………..……59 4.4.1 Experimental system………………………………………………59 4.4.2 Experimental results…………………………….……………..….59 4.5 Verification for estimate of PV power…………………………………....65 4.5.1 Validation of applying annual ratio…………………………….…65 4.5.2 Validation of applying monthly south ratio………………………66 4.6 Application of estimate………………………………………..……………71 4.6.1 Application of annual irradiation ratio……………………………71 4.6.2 Application of monthly irradiation ratio………………..…………74 4.7 Summary………………………………………………………………………78 5. STRATEGY OF PV APPLICATION 5.1 Objective and Process………………………………...……………………81 5.1.1 Objective……………………………………………………….…..81 5.1.2 Process…………………………………………………………..…82 5.2 Analysis of features……………………………………………………...….82 5.2.1 Features of PV power………………………..……………………83 5.2.2 Features of building spaces………………………………………83 5.2.3 Features of building equipment…………………………..………84 5.2.4 Features of PV applicability………………………………………86 5.3 Analysis of PV applicability in building spaces……………………..…87 5.3.1 Criteria for evaluating PV in space………………………………87 5.3.2 Power consumption density of lighting…………………….……88 5.3.3 Applicable spaces for PV power consumption…………………88 5.4 Analysis of PV applicability in building equipment……………………89 5.4.1 Criteria for evaluating PV power to equipment………………....89 5.4.2 Evaluation for PV power to equipment………………………..…89 5.4.3 Applicable equipment for PV power consumption……………..90 5.5 Summary………………………………………………………………………91 6. CASE STUDY ON STRATEGY 6.1 Case Analysis of PV Applicability…………………………………….…..93 6.1.1 Condition of building case. ……………………………………….93 6.1.2 Applicable Space and Equipment for PV……………..…………92 6.2 Case Achievement of PV Applicability…………………………..………95 6.2.1 Objective of experiment……………………………….………….95 6.2.2 Experimental system………………………………………………95 6.3 Results of Experiment………………………………………………………98 6.3.1 Irradiation and PV power………………………………………….98 6.3.2 Conversion efficiency of PV modules……………………………99 6.3.3 Performance ratio of balance system…………………….……101 6.4 Summary……………………………………………………….……………103 7. CONCLUSIONS 7.1 Results………………………………………………………………….……104 7.2 Suggestion………………………………………………………………..…105 Reference……………………………………………………………….………..….106 Table of content in Chinese………………………………….….……………111 Nomenclature in Chinese………………………………….….…………….…114 Brief content in Chinese……………...…………….………………………….117 Appendix A………………………………..…………………………….…..………189 Appendix B………………………………..…………………………….…..………201 Appendix C………………………………..…………………………….…..………202 Appendix D………………………………..…………………………….…..………203 Appendix E………………………………..…………………………….…..………204 Vita………………………………..…………………………….…..………………….205 List of submission and research……………………………….…..………206

References

[1] R.J.Spiegel,D.L.Greenberg,E.C.Kern,D.E.House,Emission reduction data for grid- connected photovoltaic power system, Solar energy 68(5) (2000)475-485.
[2] M.Oliver,T.Jackson,Energy and economic evaluation of building-integrated photovoltaics, Energy 26 (2001) 431-439.
[3] Hongxing Yang, John Burnett, Jie Ji, Simple approach to cooling load component calculation through PV, Energy and Buildings 31 (2000) 285-290.
[4] T.Erge,V.U.Hoffmann,K.Kiefer, The German experience with grid-connected PV-system, Solar Energy 70(6) 2001 479-487.
[5] Kosuke Kurokawa, Osamu Ikki, The Japanese experience with national PV system program. Solar energy 70(6) 2001 457-466.
[6] Jean Wolfe, Gavin Conibeer, The scolar progrmme for photovoltaics in the U.K., Renewable energy 15 (1998) 598-601.
[7] Werner Hiller, Dietrich Amft, Gunter Ebest, Optimization of the PV-yield in solar facades by different directions,26th PVSC, IEEE, (1997) 1337-1339.
[8] Richard Perez, Robert Seals, A new simplified version of Perez diffuse irradiance model for tilted surface, Solar Energy 39 (3) (1987) 221-231.
[9] Richard Perez, Pierre Ineichen, Robert Seals, Modeling daylight availability and irradiance component from direct and global irradiance, Solar Energy 44 (5) (1990) 271-289.
[10] Luis Robledo, Alfonso Soler, Modeling irradiance on inclined planes with an anisotropic model, Energy 23 (3) (1998) 193-201.
[11] J.Remund, E.Salvisberg, S.Kunz, On the generation of hourly shortwave radiation data ontilted surfaces, Solar Energy 62 (5) (1998) 331-344.
[12] F.J.Olmo, J.Vida, I.Foyo, Y.Castro-Diez, L. Alados-Arboledas, Prediction of global irradiance on inclined surfaces from horizontal global irradiance, Energy 24 (1999) 689-704.
[13] D.Feuermann, A.Zemel, Validation of models for global irradiance on inclined planes, Solar Energy 48(1) (1992) 59-66.
[14] H.D.Kambezidis,B.E.Psiloglou,C.Gueymard, Measurements and models for total solar irradiance on inclined surface in Athens, Greece, Solar Energy 53(2) (1994) 177-185.
[15] H.D.Behr, Solar radiation on titled south oriented surfaces:validation of transfer -models, Solar Energy 61 (6) (1997) 399-413.
[16] Luis Robledo, Alfonso Soler, Modeling irradiance on inclined planes with an anisotropic model, Energy 23 (3) (1998) 193-201.
[17] Kazuhiro Soga, Hiroshi Akasaka, Hideyo Nimiya, A comparison of methods to estimate global irradiance on tilted surfaces from horizontal global irradiance, J.Archit. Plann. Environ.Eng.,AIJ, 512 (1998) 17-24.
[18] Enrique Ruiz, Alfonso Soler, Luis Robledo, Comparison of Olmo model with global irradiance measurement on vertical surface at Madrid, Energy 27 (2002)975-986.
[19] Lin Wenxian, Gao Wenfeng, Pu Shaoxuan, Lu Enrong, Ratios of global radiation on a tilted to horizontal surface for Yunnan province, China, Energy 20 (8) (1995) 723-728.
[20] Tomas Markvart, Solar Electricity, second edition, John Wiley&Sons Ltd, (2000) 5-18.
[21] Darrel D.Massie, Jan F.Kreider, Comparison of and discrepancies between TMY and TMY2S predictions for simple photovoltaic and wind energy simulations, Transactions of the ASME 123 (2001) 6-9.
[22] 張子文(Zhang Z.W.)撰,賴榮平(Lai R.P.)指導,太陽電池應用於建築上之研究,成功大學建築研究所碩士論文,2001。
[23] Han-Chuan Huang, The research for the investigation of total energy consumption of office building, research project report of architecture & building research institute ministry of interior of Taiwan, (2000).
[24] Hsien-Te Lin, Building classification for energy conservation and energy saving strategy of residential building, research project report of architecture & building research institute ministry of interior of Taiwan, (1999).
[25] Lin T.H.,Climatic context and energy conservation design of architecture, (1997) 97-99.
[26] Takashi Oozeki, Toshiyasu Izawa, Kenji Otani, An evaluation method of PV systems, Solar Energy Materials & Solar cells, 75 (2003) 687-695.
[27] O.Perpinan,N.Persall,L.Mendez,R.Eyras. PHOTOCAMPA:design and performance of the PV system. Third World Conference on Photovoltaic Energy Conversion 2003; 2302-2305.
[28] Tadatoshi Sugiura, et al., Measurements, analyses and evaluation of residential PV systems by Japanese monitoring program. Solar Energy Materials & Solar Cells 2003; 75:767-779.
[29] M.Sidrach-de-Cardona, Ll.Mora Lopez. Performance analysis of a grid-connected photovoltaic system. ENERGY 1999;24:93-102.
[30] S.A.Omer, R.Wilson, S.B.Riffat. Monitoring results of two examples of building integrated PV (BIPV)systems in the UK. RENEWABLE ENERGY 2003;28:1387-1399.
[31] T.S.Surendra, P.N.Prakash, J.Shrikanth. The PV-powered DC floating pump system-a new revolution. Twenty-eighth PVSC conference of IEEE 2000;1611-1613.
[32] IEA PVPS Task7. Innovative Electrical Concepts. IEA;2001,p15-16.
[33] C.L. Cheng, C.Y.Chan, C.L.Chen. Empirical approach to BIPV evaluation of solar irradiation for building applications. Renewable Energy 2005;(6): 1055-74.
[34] C.J.Wang. Basic research of ecological environmental in university--power consumption, greening and water preserved. Dissertation of architectural master degree in Chang Kung university; 2001,p22-30.
[35] B.H.Hon. Optimal planning for saving energy in school. Dissertation of master degree in Chong Yun university; 2003.
[36] M.M.H, Bhuiyan, M.AliAsgar. Sizing of a stand-alone photovoltaic power system at Dhaka. RENEWABLE ENERGY 2003;28:929-938.
[37] Roger Messenger, Jerry Ventre. Photovoltaic systems engineering. CRC Press LLC; 2000.
[38] Tomas Markvart. Solar Electricity. John Wiley&Sons,LTD;2000,p.81-135.
[39] 太陽光發電懇話會(Organization of solar PV),太陽光發電系統設計與施工, Ohmsha,p.78-80,2001.
[40] Ministry of Education of Taiwan, http://www.edu.tw/EDU_WEB/
[41] Taiwan Power Company, http://www.taipower.com.tw/home_36.htm
[42] Zang Gao Ser. Checkpoint of architectural equipment. Kenchiku Bunk; 2001.
[43] Rengin Unver, Leyla Ozturk, Sukran Adiguzel, Ozlem Celik. Effect of façade alternatives on the daylight illuminance in office. ENERGY and BUILDINGS 2003;35;737-746.
[44] Christelle Franzetti, Gillese, Gilbert Achard. Influence of coupling between daylight and artificial lighting on thermal loads in office building. ENERGY and BUILDINGS 2004;36;117-126.
[45] Faculty of Architectural Research of Taiwan. Guide of green building evaluation. 2003,p.77-79.
[46] Bureau of standard and examination. CNS12112: illuminance standard.
[47] D.G.Zo. Architectural Physics. She Ean book Inc;1999,p.339-341.
[48] J.A.Duffie and W.A.Beckman. Solar Engineering of Thermal Process. 2nd edn., Wiley, New York, NY, 1991.
[49] M.Iqbal. An introduction to solar radiation. Academic press, Toronto, Canada, 1984.
[50] Hiroyuki Nakamura, Takao Yamada, Tadatoshi Sugiura, 2001, “Data analysis on solar irradiance and performance characteristics of modules with a test facility of various tilted angles and directions”, Solar Energy Materials & Solar cells, Vol.67, pp.591-600.
[51] International Electrotechical Commission (IEC), IEC 61215, Crystalline silicon terrestrial photovoltaic modules – Design qualification and type approval, 1993,pp.19.
[52] 西澤義昭,(1998),太陽光發電初步與住宅應用, pp.105-115,理工圖書株式會社。
[53] Friedrich Sick, Thomas Erge, 1998, Photovoltaics in building,.
[54] Liu,B.Y.H.and Jordan.R.C., Daily insolation on surface tilted toward the equator, ASHRAE J.3,53,1960.
[55] 張思源(Zhang S.Y.)撰,林憲德(Lin S.D.)指導,建築物能源動態解析用氣象資料之研究—臺灣地區「平均氣象年」之製作,成功大學建築研究所碩士論文,1987。
[56] 張金城(Zhang K.C.)撰,周家鵬(Chou C.P.)指導,全天空太陽輻射能量與可及性漫射光照度迴歸模型之建立—以淡水地區為例,2002。
[57] 石原修(Osamu Ishihara)、藤廣聖、吉原文子,1996。太陽電池模組發電效率與室外影響因子之關係,日本建築學會計畫系論文集,第481號,pp33-40,1996.3。
[58] Charles M.Whitaker, David L.King, David E.Collier, et al. Application and validation
of a new PV performance characterization method, IEEE 26th PVSC; pp.1253-1256, Sept.30-Oct.3, 1997.
[59] Takeharu Yamawaki, Seishiro Mizukami, Takashi Masui, Haruo Takahashi, Experimental investigation on generated power of amorphous PV module for roof azimuth, Solar Energy Materials & Solar cells, Vol.67, pp.591-600,2001.
[60] G.E.Ahmad, H.M.S.Hussein, H.H.El-Ghetany, Theoretical analysis and experimental verification of PV modules, Renewable Energy 28, pp.1159-1168,2003.
[61] T.M.I.Alamsyah, K.Sopian, A.Shahiri, Predicting average energy conversion of photovoltaic system in Malaysia using asimplified method, Renewable Energy 29, pp.403-411,2004.
[62] Richard Perez, Rebecca Reed, Thomas Hoff, Validation of a simple PV simulation engine, Solar Energy, 77, pp.357-362,2004.
[63] Ljubisav Stamenic, Eric Smiley, Karim Karim, Low light conditions modeling for building integrated photovoltaic systems, Solar Energy 77,pp.37-45,2004.
[64] A.N.Celik, Long-term energy output estimation for PV energy system using synthetic solar irradiation data, Energy 28,pp.479-493,2003.
[65] S.Shaari, N.Bowman, Photovoltaics in buildings: a case study for rural England and Malaysia, Renewable Energy 15, pp.558-561,1998.
[66] M.Olive, T.Jackson, Energy and economic evaluation of building-integrated photovoltaics, Renewable Energy 26, pp.431-439,2001.
[67] Joachim Benemann, Oussama Chehab, Eric Schaar- Gabriel, Building-integated PV modules, Solar Energy Materials & Solar cells, Vol.67, pp.545-354,2001.
[68] Kosuke Kurokawa, PV system in urban environment, Solar Energy Materials & Solar cells, Vol.67, pp.469-479,2001
[69] Seung-Ho Yoo, Eun-Tack Lee, Efficiency characteristic of building integrated photovoltaics as a shading device, Building and Environment, 37,pp.615-623,2002.
[70] Maria Brogren, Anna Green, Hammarby Sjostad-an interdisciplinary case study of the integration of photovoltaics in a new ecologically sustainable residential area in Stockholm, Solar Energy Materials & Solar cells, Vol.75, pp.761-765,2003.
[71] AbuBakr S.Bahaj, Photovoltaic roofing : issues of design and integration into buildings, Renewable Energy 26, pp.2195-2204,2003.
[72] M.Sidrach-de-Cardona, Ll. Mora Lopez, Performance analysis of a grid-connected photovoltaic system, Energy,24,pp.93-102,1999.
[73] Takashi Oozeki, Toshiyasu Izawa, Kenji Otani, Kosuka K uroawa, An evaluation method of
PV systems Solar Energy Materials & Solar cells, Vol.75, pp.587-695,2003..
[74] T.Muneer, Solar radiation and daylight models. 2nd edn., Elsevier Ltd, pp.36-37, 2004.
[75] 鄭政利(Cheng C.L.),詹肇裕,彭聖皓,太陽光電系統之實測評估研究--以台北地區為例,技術學刊,第十八卷,第二期, pp.245 -255,2003.
[76] M.Sidrach-de-Cardona, Ll.Mora Lopez. Performance analysis of a grid-connected
photovoltaic system. ENERGY;24:93-102; 1999.
[77] 日本建築學會(Organization of Japanese architecture),太陽能建築設計指導,彰國社,2000.
[78] 吳旭晉(Wu H.C.)撰,李建興(Li G.S.)指導,以遺傳演算法與模擬退火法計算固定式太陽電池板之最佳安裝角度,義守大學電機研究所碩士論文,2000.
[79] 劉文漢(Lio W.H.)撰,何金滿(Her G.M.)指導,中壢地區全天候即時太陽光電能發電之監測分析,中原大學電機研究所碩士論文,2002.
[80] 黃聖厳(Huang S.Y.)撰,王耀諄(Wang Y.J.)指導,太陽能發電技術暨經濟分析之研究,雲林科技大學電機研究所碩士論文,2000.
[81] 徐翠華(She T.H.)撰,徐勝一(She T.H.)指導,臺灣地區太陽輻射及太陽能發電潛力研究,師範大學地理研究所碩士論文,2002.
[82] 莊嘉琛編譯,太陽能工程—太陽電池篇,全華科技圖書公司,台北,1997.
[83] International Electrotechnical Commission, IEC61215, Crystalline silicon terrestrial photovoltaic modules- design qualification and type approval, 1993.04.
[84] Page,J.K., The estimation of monthly mean value of daily short wave irradiation on vertical and inclined surfaces from sunshine records for latitudes of 60°N to 40°S. BS32, Department of Building Science, University of Sheffield,UK,1977.
[85] Liu,B.Y.H. and Jordan,R.C., The inter-relationship and characteristic distribution of direct, diffuse and total solar radiation, Solar Energy 4, 1,1960.
[86] 尤博民(U B.M.)撰,鄭政利(Cheng C.L.) 指導,太陽光發電系統適用於大學校園建築空間與設備之研究─以台灣科技大學為例,2004,06. [87]
[87] 周鼎金、邱繼哲、李魁鵬、連宏基,建築整合型光電外遮陽設計與應用之研究,中華民國建築學會第十五屆建築研究成果發表會論文集,2003.12.6。
[88] 廖霖梅、周家鵬,建築物採光、遮陽以及太陽能使用效益評估研究---以淡江大學三棟建築物為例,中華民國建築學會第十六屆建築研究成果發表會論文集,2004.6.12。
[89] 周伯丞、林嘉雄、江哲銘,不同空間量體於動態自然採光條件之室內光分佈探討,中華民國建築學會第十六屆第二次建築研究成果發表會論文集,2004.12.4。
[90] 周鼎金,學校建築用電量之研究---以台北市國民中小學為例,建築學報,第32期,
2000.4.20。

QR CODE