簡易檢索 / 詳目顯示

研究生: 林雨石
Yu-Shih Lin
論文名稱: 以CFD探討垂直軸風力發電機配置對其運轉效率之影響
The Effect of Layout on Overall Power Performance for Multiple Vertical-Axis Wind Turbines by CFD
指導教授: 陳瑞華
Rwey-Hua Cherng
口試委員: 陳瑞華
Jui-Hua Chen
鄭蘩
Fan Cheng
黃慶東
Ching-Tung Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 87
中文關鍵詞: 計算流體力學垂直軸風力發電機運轉效率
外文關鍵詞: Computational Fluid Dynamics, Vertical-Axis Wind Turbine, Power Performance
相關次數: 點閱:364下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 風力發電機為了避免受到其他風機在運行過程中擾動氣流而產生的渦流干擾,所以在設置時會保持一定的距離,但Dabiri團隊研究發現,若將複數垂直軸風力發電機模仿魚群游動前進之配置,可以使風機利用渦流來提升整體的運轉效率。本研究針對垂直軸風力發電機在相同的風場條件之下,以計算流體力學(CFD)模擬分析在不同距離與不同相對角度下,整體運轉效率的變化。分析結果顯示當一對風機彼此旋轉方向相反且距離為1.5倍風機直徑時,若風向與雙風機中心連線垂直且間隙處風機旋轉方向與風向一致,則平均運轉效率會提高8.6%;當風機距離為3倍風機直徑時,若風向與雙風機中心連線夾30度且間隙處風機旋轉方向與風向一致,則平均運轉效率會提高8.9%;當風機距離為6倍風機直徑時,若風向與雙風機中心連線夾40度且間隙處風機旋轉方向與風向一致,則平均運轉效率會提高9.1%。將整體運轉效率分布趨勢結合風花圖,可以得出某地最佳化的風機擺設配置;分別以淡水與宜蘭為例,將兩個彼此距離為三倍風機直徑遠的垂直軸風力發電機以最佳化的風機配置擺設,可以使全年的整體運轉效率分別提高4.1%與4.2%。本研究亦根據Brownstein提出的風機陣列規則,將9個風機以彼此距離6倍風機直徑且夾角40度排成陣列形式,模擬後所得之整體運轉效率提高了11%。


    The overall power performance of multiple vertical-axis wind turbines (VAWTs) can be enhanced if they are positioned like fish schooling according to the research of Dabiri’s team. This study focuses on how to enhance the overall power performance of VAWTs by adjusting their layout under the same wind condition. The power performances for layouts with various distances and angles are evaluated by analyzing the results from computational fluid dynamics (CFD). The results show that the overall power performances of a pair of VAWTs can increase about 10% if they are positioned properly. This study also simulates the 9-VAWTs array according to Brownstein’s rule; the overall power performance increases 11.1%. In addition, the optimal layout of a pair of VAWTs can be determined by combining the previous results with the local wind rose. For example, the optimal overall power performance increases 4.1% and 4.2% for Tamsui and Yilan respectively.

    第一章 緒論 1.1 研究緣起與動機 1.2 論文架構 第二章 風力發電機之介紹 2.1 前言 2.2 風力發電機類型 2.2.1 阻力型垂直軸風力發電機 2.2.2 升力型垂直軸風力發電機 2.3 風力發電機理論 2.3.1 能量係數 2.3.2 TSR 2.3.3 TSR曲線 2.3.4 可變速風機 第三章 CFD模型之建立及驗證 3.1 前言 3.2 CFD 3.2.1 Realizable 模型 3.2.2 壁面函數 3.2.3 Piso算法 3.3 參數設定 3.3.1 計算域規劃 3.3.2 網格切割設定 3.3.3 入流風速及風機轉速設定 3.3.4 時間增量設定 3.3.5 收斂值之設定 3.4 模擬結果 3.4.1 網格切割對模擬結果之影響 3.4.2 時間增量對模擬結果之影響 第四章 複數風機配置對整體運轉效率之影響 4.1 前言 4.2 仿生工程 4.2.1 魚群 4.2.2 卡門渦街 4.2.3 單一風機之尾流現象 4.3 雙風機配置之設定 4.3.1 數值模擬設定 4.3.2 風機相對位置與距離 4.4 雙風機模擬結果 4.4.1 距離1.5D之雙風機模擬結果 4.4.2 距離3D之雙風機模擬結果 4.4.3 距離3D至6D夾角40度之雙風機模擬結果 4.5 風機陣列 4.5.1 風機陣列模擬結果 第五章 實務應用 5.1 前言 5.2 距離3D雙風機之最佳配置 5.2.1 計算案例一 5.2.2 計算案例二 第六章 結論與建議 6.1 結論 6.2 建議 參考文獻

    [ 1 ] ANSYS, Inc. (2009). ‘‘ANSYS FLUENT 12.0, User's Guide’’.

    [ 2 ] ANSYS, Inc. (2011). ‘‘ANSYS FLUENT 14.0, Theory Guide’’.

    [ 3 ] Araya, Daniel B., Craig, Anna E., Kinzel, Matthias & Dabiri, John O. (2014). ‘‘Low-order modeling of wind farm aerodynamics using leaky Rankine bodies’’, Journal of Renewable and Sustainable Energy 6, 063118.

    [ 4 ] Bravo, R., Tullis, S. & Ziada, S. (2007). ‘‘Performance Testing of a Small Vertical-Axis Wind Turbine’’, Proceedings of the 21st Canadian Congress of Applied Mechanics (CANCAM07), 3–7.

    [ 5 ] Brownstein, Ian D., Kinzel, Matthias & Dabiri, John O. (2016). ‘‘Performance enhancement of downstream vertical-axis wind turbines’’, Journal of Renewable and Sustainable Energy 8, 053306.

    [ 6 ] Brusca, S., Lanzafame, R. & Messina, M. (2014). ‘‘Design of a vertical-axis wind turbine: how the aspect ratio affects the turbine’s performance’’, Int J Energy Environ Eng (2014) 5:333–340.

    [ 7 ] Dabiri, John O. (2011). ‘‘Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays’’, Journal of Renewable and Sustainable Energy 3, 043104.

    [ 8 ] Kinzel, Matthias, Araya, Daniel B. & Dabiri, John O. (2015). ‘‘Turbulence in vertical axis wind turbine canopies’’, Phys. Fluids 27, 115102 (2015).

    [ 9 ] Korkan, K.D., Camba III, J. & Morris, P. M. (1986). ‘‘Aerodynamic Data Banks for Clark-Y, NACA 4-Digit, and NACA I6-Seris Airfoil Families.’’ National Aeronautics and Space Administration Lewis Research Center Contract NAS 3-272.

    [ 10 ] Mohamed, M.H., Ali, A.M. & Hafiz, A.A. (2014). ‘‘CFD analysis for H-rotor Darrieus turbine as a low speed wind energy converter’’, Engineering Science and Technology, an International Journal 18 (2015) 1-13.

    [ 11 ] Mulvany, N., Tu, J. Y., Chen, L. & Anderson, B. (2004). ‘‘Assessment of two-equation turbulence modelling for high Reynolds number hydrofoil flows’’, Int. J. Numer. Meth. Fluids 2004; 45:275–299.

    [ 12 ] Ning, Andrew (2016). ‘‘Actuator cylinder theory for multiple vertical axis wind turbines’’, Wind Energ. Sci., 1, 327–340.

    [ 13 ] Ragheb, Magdi & Ragheb, Adam M. (2011). ‘‘Wind Turbines Theory - The Betz Equation and Optimal Rotor Tip Speed Ratio’’, Fundamental and Advanced Topics in Wind Power 19-38.

    [ 14 ] Whittlesey, Robert W, Liska, Sebastian & Dabiri, John O. (2010). ‘‘Fish schooling as a basis for vertical axis wind turbine farm design’’, Bioinspir. Biomim. 5: 035005.

    [ 15 ] Zanforlin, Stefania & Nishino, Takafumi (2016). ‘‘Fluid dynamic mechanisms of enhanced power generation by closely spaced vertical axis wind turbines’’, Renewable Energy 99 (2016) 1213-1226.

    [ 16 ] 交通部中央氣象局,「中央氣象局全球資訊網-觀測資料查詢,CWB Observation Data Inquire System」,2018。

    [ 17 ] 交通部中央氣象局,「中華民國104年氣候資料年報」,2015。

    [ 18 ] 臺灣電力公司,「再生能源發電概況」,2017。

    QR CODE