簡易檢索 / 詳目顯示

研究生: 洪嘉駿
Chia-Chun Hung
論文名稱: 壓電圓柱薄殼製作水聲元件之流固耦合振動特性
Experimental Measurement of Solid-Liquid Coupled Vibration Characteristics from Piezoelectric Cylindrical Shells Driving Hydroacoustic Devices
指導教授: 黃育熙
Yu-Hsi Huang
口試委員: 趙振綱
Ching-Kong Chao
林紀穎
Chi-Ying Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 202
中文關鍵詞: 水聲元件壓電圓柱薄殼電極設計流固耦合振動特性壓電幫浦電子斑點干涉術雷射都卜勒振動儀阻抗分析儀有限元素法共振頻率振動模態流量
外文關鍵詞: hydroacoustic device, piezoelectric cylindrical shell, electrode design, solid-liquid coupling vibration characteristics, piezoelectric pump, electronic speckle pattern interferometry, laser doppler vibrometer(LDV), impedance analyzer, finite element method, resonance frequency, mode shape, flow rate
相關次數: 點閱:521下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討壓電材料於水聲元件之幫浦結構耦合流體振動並造成流率的量測與分析,幫浦應用四片壓電圓柱薄殼以不同電極設計的模態振形作動推動流體,透過多種實驗量測及數值計算的研究方法得知壓電材料於不同流體時以不同電極設計作動的共振頻率及共振模態。研究主要探討壓電圓柱薄殼在與空氣和水耦合作動下影響的流固耦合振動特性,並設計兩種不同腔室大小的壓電幫浦進行比較,兩者設計皆是利用四片壓電圓柱薄殼結合PDMS高分子薄膜管形成類似自由邊界的形式,在共振頻率下驅動而產生位移進而改變腔體體積,使液體因腔體機變化而增加流體的流量。本研究之壓電元件與流體耦合的振動特性使用三種量測設備進行實驗量測,包括全域式電子斑點干涉術(Electronic Speckle Pattern Interferometry, ESPI),同時對壓電材料於流體中的面內與面外振動狀態進行即時量測,紀錄壓電材料與不同流體時耦合作用下的共振頻率與振動模態,雷射都卜勒振動儀(Laser Doppler Vibrometer, LDV)以單點量測壓電材料與流體耦合的面外振動位移,並可使用穩態掃頻的方式獲得壓電幫浦於流固耦合的面外共振頻率,阻抗分析儀則針對壓電材料的電性進行量測,主要獲得面內耦合面外振動的共振頻率與反共振頻率。本研究對壓電圓柱薄殼耦合不同流體的振動特性進行量測,所有的實驗量測結果皆與固液耦合的有限元素數值計算進行分析比較,無論在共振頻率或振動模態皆可相互對應,對於壓電材料的動態特性於實驗量測與數值分析皆進行比較,成功獲得壓電元件於流體上與流體內的振動特性。最後,本研究將得到的振動特性結果應用於兩種不同的壓電幫浦中,並在開放式流道系統探討與水作用下共振頻率及振動模態對於壓電幫浦流量與流速的影響,對於不同的壓電幫浦設計在水中的流固耦合共振頻率及振動模態提供完整且豐富的資訊。


The solid-liquid coupled vibration characteristics of piezoelectric material was investigated on pump structures when piezoelectric actuator used on hydroacoustic devices. Four piezoelectric cylindrical shells were applied the electrode design method to cause different motions pushing and pulling fluids in pumps. Experimental measurements and finite element numerical calculations were used to determine the resonant frequencies and mode shapes of electrode designs for piezoelectric cylindrical shells, which could be used to promote the flow of air and water. Two different chamber sizes of piezoelectric pumps were designed to verify the solid-liquid coupled vibrations of piezoelectric elements using on pumps with piezoelectric cylindrical shells located above the surface of the fluid under quasi-free boundary. Both of designs have four piezoelectric cylindrical shells bonded to PDMS polymer membrane tube, such that resonant vibrations produce changes in the volume of the chamber, which increases the flow of fluid. Three experimental techniques were used to determine the solid-liquid coupled vibration characteristics. Electric speckle pattern interferometry (ESPI) was used to measure the resonant frequencies and mode shapes associated with out-of-plane and in-plane vibrations of piezoelectric material interacting with fluids. Second, a laser Doppler vibrometer (LDV) was used to obtain the frequency spectrum of vibrating displacement using dynamic signal swept-sine analysis. The third experiment involved analyzing impedance in the piezoelectric elements in order to identify the resonant frequencies and anti-resonant frequencies of the piezoelectric material under the influence of a fluid. The vibration coupling characteristics of piezoelectric cylindrical shells coupled with different fluids were determined by experimental measurements and the results were verified with finite element numerical calculation. Whether resonant frequencies or mode shapes in this fluid-structure coupled system, the dynamic characteristics of the piezoelectric materials have good consistence between experimental and numerical results. Finally, the results of vibration characteristics, which were obtained from this study, were applied to two different piezoelectric pumps. The effects of resonant frequencies and vibration modes on the flow rate of piezoelectric pump were discussed in open flow channel system. It provides complete information on the solid-liquid vibration characteristics of different piezoelectric pump designs.

中文摘要 Abstract 誌謝 目錄 圖目錄 表目錄 符號引所 第一章 緒論 1.1研究背景 1.2文獻回顧 1.3內容介紹 第二章 壓電與流固耦合基本理論與實驗儀器介紹 2.1壓電基本理論 2.2壓電材料常數 2.3流固耦合分析方法 2.3.1流體模型 2.3.2固體模型 2.3.3流固耦合模型 2.4電子斑點干涉術 2.4.1 面外振動量測 2.4.2 面內振動量測 2.5雷射都卜勒振動儀(Laser Doppler Vibrometer , LDV) 2.6阻抗分析儀 2.7紅線熱像儀 第三章 壓電圓柱薄殼三維振動特性、電極設計與溫度量測 3.1壓電圓柱薄殼簡介 3.1.1試片規格與製作條件說明 3.2壓電圓柱薄殼三維振動特性分析實驗方法與量測步驟 3.3數值分析 3.3.1建立模形 3.3.2邊界設定與分析設定 3.3.3元素材料選用 3.3.4分析參數 3.4自由邊界下壓電圓柱薄殼的三維耦合振動特性實驗量測結果與數值計算結果比較 3.4.1壓電圓柱薄殼(大)實驗量測結果 3.4.2壓電圓柱薄殼(小)實驗量測結果 3.5壓電圓柱薄殼之最佳電極設計 3.5.1最佳電極設計實驗量測與數值計算結果 3.5.2綜合討論 3.6壓電圓柱薄殼溫度特性 3.6.1兩種基本電極於自由邊界下之溫度效應探討 3.6.2溫度特性總結 第四章 壓電水聲元件設計與製作程序 4.1壓電水聲元件設計概念 4.1.1腔室大之PDMS薄膜無閥式幫浦結構(Pump A) 4.1.2腔室小之PDMS薄膜無閥式幫浦結構(Pump B) 4.2壓電無閥式幫浦製作過程 4.2.1製作腔室大之PDMS薄膜無閥式幫浦結構(Pump A) 4.2.2製作腔室小之PDMS薄膜無閥式幫浦結構(Pump B) 4.3討論 第五章 壓電水聲元件之流固聲場耦合振動分析及實驗量測 5.1流固聲場耦合振動分析實驗方法 5.2流固耦合振動特性數值分析 5.2.1腔室大之PDMS薄膜無閥式壓電幫浦(Pump A) 5.2.2腔室小之PDMS薄膜無閥式壓電幫浦(Pump B) 5.3流固聲場耦合振動特性實驗量測與數值計算結果比較 5.3.1腔室大之PDMS薄膜無閥式壓電幫浦(Pump A)分析結果 5.3.2腔室小之PDMS薄膜無閥式壓電幫浦(Pump B)分析結果 5.4水聲元件流固耦合振動分析總結 5.4.1腔室大之PDMS薄膜無閥式壓電幫浦(Pump A) 5.4.2腔室小之PDMS薄膜無閥式壓電幫浦(Pump B) 第六章 壓電幫浦流量及流速實驗方式與量測結果 6.1腔室大之PDMS薄膜無閥式幫浦(Pump A)流量及流速實驗方式與量測結果 6.1.1 Pump A流量及流速實驗方式 6.1.2 Pump A流量及流速量測結果 6.2腔室小之PDMS薄膜無閥式幫浦(Pump B)流量及流速實驗方式與量測結果 6.2.1 Pump B流量及流速實驗方式 6.2.2 Pump B流量及流速量測結果 6.3腔體壓力場數值分析 6.4討論 第七章 結論與未來展望 7.1結論 7.2未來展望 參考文獻

[1] Curie J., and Curie P., “Development by Pressure of Polar Electricity in Hemihedral Crystals with Inclined Faces,” Bull. Soc. Min de France, 3, pp. 90-102, 1880.
[2] Jaffe B., Roth R.S., and Marzullo S., “Piezoelectric Properties of Lead Zirconate-Lead Titanate Solid-Solution Ceramics,” J. Appl. Phys., 25(6), pp. 809-810, 1954.
[3] Heywang W., Lubitz K. and Wersing W., Piezoelectricity-evolution and future of a technology. Springer, 2008.
[4] “陶瓷技術手冊” ,經濟部技術處發行,中華民國產業科技發展協會與中華民國粉末冶金協會出版(1994/07)
[5] Smits J. G. and Choi W. S., “The Constituent Equations of Piezoelectric Heterogeneous Bimorphs,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 38(3), pp. 256-270, 1991.
[6] Lloyd P. and Redwood M., “Finite-difference method for the investigation of the vibrations of solids and the equivalent-circuit characteristics of piezoelectric resonators, Parts I and II,” J. Acoust. Soc. Am., 39, pp. 346-361, 1966.
[7] Tzou H.S., Piezoelectric shells: distributed sensing and control of continua. Kluwer Academic Publishers, 1993.
[8] Huang Y. H., and Ma C. C., “Experimental measurements and finite element analysis of the coupled vibrational characteristics of piezoelectric shells,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 59(4), pp. 785-798, 2012.
[9] Tiersten, H.F., Linear Piezoelectric Plate Vibrations. New York: Plenum, 1969.
[10] IEEE standard on piezoelectricity. IEEE Ultrasonics Ferroelectrics and Frequency Control Society, ANSI/IEEE Std 176-1987.
[11] Butters J.N. and Leendertz J.A., “Speckle pattern and holographic techniques in engineering metrology,” Optics and Laser Technology, 3(1), pp. 26-30, 1971.
[12] Hgmoen K. and Lkberg O.J., “Detection and measurement of small vibrations using electronic speckle pattern interferometry,” Applied Optics, 16(7), pp. 1869-1875, 1977.
[13] Wykes C., “Use of electronic speckle pattern interferometry/ESPI/ in the measurement of static and dynamic surface displacements,” Optical Engineering, 21, pp.400-406, 1982.
[14] Nakadate S., Saito H. and Nakajima T., “Vibration measurement using phase-shifting stroboscopic holographic interferometry,” Journal of Modern Optics, 33(10), pp. 1295-1309, 1986.
[15] Wang W.C., Hwang C.H. and Lin S.Y., “Vibration measurement by the time-averaged electronic speckle pattern interferometry methods,” Applied Optics, 35,(22), pp.4502-4509, 1996.
[16] Ma C.C. and Huang C.H., “Experimental and numerical analysis of vibrating cracked plates at resonant frequencies,” Experimental Mechanics, 41(1), pp.8-18, 2001.
[17] Ma C.C. and Huang C.H., “Experimental full field investigations of resonant vibrations for piezoceramic plates by an optical interferometry method,” Experimental Mechanics, 42(2), pp.140-146, 2002.
[18] Ma C.C. and Lin Y.C., “Resonant vibration of piezoceramic plates in fluid,” Interaction and Multiscale Mechanics, 1(2), pp.177-190, 2008.
[19] Ma C.C., Lin H.Y., Lin Y.C. and Huang Y.H., “Experimental and numerical investigations on resonant characteristics of a single-layer piezoceramic plate and a cross-ply piezolaminates composite plate,” Journal of the Acoustical Society of America, 119(3), pp.1476-1486, 2006.
[20] Cady W.G., Piezoelectricity. McGraw-Hill Book Co. Inc., New York, 1946.
[21] Mason W.P., Piezoelectric crystals and their application to ultrasonics. New York: Van Nostrand, 1950.
[22] Gaussorgues G. and Chomet S., Infrared thermography. Springer, 1994.
[23] 黃育熙、馬劍清、林世皓、郭椿億,壓電陶瓷平板高頻面內動態特性與溫度分佈特性研究,臺北,臺灣,2008。
[24] Balamurugan V. and Narayanan S., “Sell finite element for smart piezoelectric composite plate/shell structures and its application to the study of active vibration control,” Finite Element in Analysis and Design, 37, pp. 713-738, 2001.
[25] Ding H.J., Xu R.Q. and Chen W.Q., “Free vibration of transversely isotropic piezoelectric circular cylindrical panels,” International Journal of Mechanical Sciences, 44, pp. 191-206, 2002.
[26] Yang Z., Yang J., Hu Y. and Wang Q.M., “Vibration characteristics of a circular cylindrical panel piezoelectric transducer,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 55(10), pp. 2327-2335, 2008.
[27] Chen Q., Natale D., Neese B., Ren K., Lin M., Zhang Q. M., Pattom M., Wang K.W., Fang H. and Im E., “Piezoelectric polymers actuators for precise shape control of large scale space antennas,” SPIE's 14 th International Symposium on Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, San Diego, California, March 18-22, 2007.
[28] Ma C.C., Lin Y.C., Huang Y.H. and Lin H.Y., “Experimental measurement and numerical analysis on resonant characteristics of cantilever plates for piezoceramic bimorphs,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 54(2), pp. 227-239, 2007.
[29] 黃育熙,馬劍清,「壓電陶瓷平板、薄殼、與雙晶片三維耦合動態特性之實驗量測、數值計算、與理論解析」,國立台灣大學機械工程研究所博士論文,2009年。
[30] Krushynska A., Meleshko V., Ma C.C., Huang Y.H., “Mode excitation efficiency for contour vibrations of piezoelectric resonators,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 58(10), pp. 2222-2238 ,2011.
[31] Luo Y., Yin X., Wang X., Zhang Z., “Study of Polymeric MEMS Micro-pump Actuated by PZT Bimorph,” IEEE, pp. 225-228, April 2013.
[32] 沈弘俊,李青峻,許家睿,吳咨亨,無閥門微幫浦裝置元件之介紹與其應用,中華民國97年。
[33] Wu J., and Lu L., “LIQUID-SOLID COUPLED SYSTEM OF MICROPUMP,” Acta Mechanica Solida Sinica, 19(1), March, 2006.
[34] De Lima C. R., Vatanabe S. L., Choi A., Nakasone P. H., Pires R. F., and Nelli Silva E. C., “A biomimetic piezoelectric pump: Computational and experimental characterization,” Sensors and Actuators A: Physical, 152(1), pp. 110-118, 2009.
[35] Zhou Y., and Amirouche F., “Study of fluid damping effects on resonant frequencyof an electromagnetically actuated valveless micropump,” Springer-Verlag London Limited, pp. 1187-1196, 2009.
[36] Hou W., Das B., Jiang Y., Quin S., Zheng X.I., Pi X., Yang J., Liu H.G., Zeng J., and Zeng Z.G., “Simulation of the Diaphragm Properties of APZT-based Valveless Micropump,” IEEE Nano/Micro Engineered and Molecular Systems, 2008.
[37] Ma H.K., Hou B.R., Wu H.Y., Lim C.Y., Gao J.J., and Kou M.C., “Development and application of a diaphragm micro-pump with piezoelectric device,” Springer-Verlag, 14, pp. 1001-1007, 2008.
[38] Ma H.K., Chen B.R., Gao J.J., and Lim C.Y., “Development of an OAPCP-micropump liquid cooling system in a laptop,” International Communications in Heat and Mass Transfer, 36, pp. 225-232, 2009.
[39] Ma, H. K., Su, H. C., and Wu, J. Y., “Study of an innovative one-sided actuating piezoelectric valveless micropump with a secondary chamber,” Sensors and Actuators A: Physical, 171(2), pp. 297-305, 2011.
[40] 連誼婷,以壓電驅動無閥門微幫浦之流固耦合分析,國立中央大學機械工程學系碩士論文,中華民國101年6月。
[41] Singhal V., Garimella S.V., and Murthy J.Y., “Low Reynolds number flow through nozzle-diffuser elements in valveless micropumps,” pp. 226–235, 2004.
[42] Huang, Y. H., and Hsu, H. T., “Solid-liquid coupled vibration characteristics of piezoelectric hydroacoustic devices,” Sensors and Actuators, A: Physical, 238, pp. 177-195, 2016.
[43] Ai, S.-m., and Sun, L.-p., "Fluid-structure coupled analysis of underwater cylindrical shells," Journal of Marine Science and Application, 7(2), pp. 77-81, 2008.
[44] .Zhou Y.S. and Tiersten H.F., “On the normal acceleration sensitivity of contoured quartz resonators with the mode shape displaced with respect to rectangular supports,” Journal of Applied Physics, 69(5), 1991, pp. 2862-2870.
[45] Royer D., Dieulesaint E. and LyleElastic S.N., “Waves in Solids: Generation, acousto-optic interaction, applications,” Springer, 2000.
[46] Andrushchenko V.A., Vovkodav I.F., Karlash V.L. and Ulitko A.F., “Coefficient of electromechanical coupling in piezoceramic disks,” International Applied Mechanics, 11(4), 1975, pp. 377-382.
[47] F. M. White, “Fluid Mechanics,” McGraw-Hill, New York , pp. 334-336, 345-351 , 1986.

QR CODE