簡易檢索 / 詳目顯示

研究生: 黃兆弘
Chao-Hung Huang
論文名稱: 新型平面化下接觸式結構有機薄膜電晶體
New Planar Bottom-Contact Structure for Organic Thin-Film Transistors
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 王錫九
Si-Jiou Wang
李志堅
Chih-Chien Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 116
中文關鍵詞: 平面化下接觸式結構雙層閘極絕緣層有機薄膜電晶體
外文關鍵詞: Bottom-Contact, bi-layer gate insulator, OTFT, Planar
相關次數: 點閱:164下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   有機薄膜電晶體主要之兩種結構:上接觸式(TC)結構以及下接觸式(BC)結構,其中前者雖然因接觸電阻較小而有較好的元件特性,但是在小尺寸以及大面積應用上不利,我們希望發展出特性足以和前者比擬的下接觸式元件。
      我們提出了一種新型的雙層絕緣層下接觸式平面化結構,電極與絕緣層被製作成同一水平高度,並分別以BOE濕式蝕刻以及RIE乾式蝕刻方式製作。在製作過程中發現了因舉離製程所引起不理想之殘留物突起,這個問題藉由採用加入PMGI薄膜的新式製程而得以解決,幾近於完全平面化的元件因此產出。接著以AFM分析、電阻分析、電性分析的角度對傳統下接觸式結構元件以及平面化元件作綜合性的比較,發現pentacene主動層在平面化元件的金屬/絕緣層界面成長連續性較好,直接導致較好的元件特性。這個結果經由使用ATLAS (Silvaco)模擬軟體分別對傳統下接觸式結構以及平面化元件進行模擬而得以證實。
      本研究從元件結構著手而改善元件特性,能夠作為有機薄膜電晶體領域發展的一個參考。


    There are two common structure of OTFT: Top contact (TC) structure and Bottom contact (BC) structure. The former has better electrical performance than the latter because of lower contact resistance, but it also has some problems with small-scale device and large area applications.
    We here introduce a new bi-layer insulator planar BC structure, the electrodes and insulator are made in the same level, and it is fabricated by wet etching and dry etching methods separately. The peak-like residue which consists of metal and photoresist is found at the interface between electrode and insulator. A new process flow which employed PMGI is adopted to solve the non-ideal problem. The conventional BC device and the planar BC device are compared with multiple analyze methods: AFM images, contact resistance and electrical performance. It has been found that pentacene grains continually growing across the electrode/insulator interface, resulting better electrical characteristics. The phenomenon which mentioned above is confirmed by employing the ATLAS (Silvaco) numerical simulation software.

    論文摘要 I ABSTRACT II 誌謝 III 圖目錄 VI 表目錄 X 第一章 概論 1 1.1 研究背景 1 1.2 研究動機與方向 2 1.3 論文大綱 4 第二章 有機薄膜電晶體介紹 6 2.1 有機半導體介紹 6 2.1.1 有機半導體材料概論 7 2.1.2 Pentacene材料特性介紹 8 2.2 有機半導體傳輸機制 9 2.2.1 Hopping Model [46-48] 10 2.2.2 Multiple Trapping and Release [49、50] 11 2.2.3 偏極子(Polaron)和雙偏極子(Bipolaron) [51] 12 2.3 有機薄膜電晶體結構 13 2.4 有機薄膜電晶體操作模式 15 2.5 參數萃取方式 18 2.5.1 載子移動率(Mobility, μ ) 18 2.5.2 臨界電壓(Threshold Voltage, VT) 20 2.5.3 次臨界斜率(Subthreshold Swing) 20 2.5.4 開關電流比(On/Off Current Ratio, ION/IOff) 21 第三章 實驗方法與步驟 31 3.1 元件結構 31 3.2 製作流程 32 3.1.1 閘極(Gate) 32 3.1.2 閘極絕緣層(Gate Insulator Layer) 32 3.1.3 源極/汲極(Source/Drain) 33 3.1.4 主動層(Active Layer) 36 3.3 製程及分析設備介紹 37 第四章 平面化之下接觸式結構有機薄膜電晶體 42 4.1 基礎平面化有機薄膜電晶體製作 42 4.1.1 基礎平面化元件AFM分析 42 4.1.2 基礎平面化元件之電阻分析 44 4.1.3 基礎平面化元件電性分析 46 4.2 簡易突起消除法製作之有機薄膜電晶體 48 4.2.1 簡易突起消除法製作之元件AFM分析 48 4.2.2 簡易突起消除法製作之元件電阻分析 49 4.2.3 簡易突起消除法製作之元件電性分析 50 4.3 改良式平面化有機薄膜電晶體製作 51 4.3.1 改良式平面化有機薄膜電晶體製作流程 52 4.3.2 改良式平面化有機薄膜電晶體AFM分析 54 4.3.3 改良式平面化有機薄膜電晶體電阻分析 56 4.3.4 改良式平面化有機薄膜電晶體電性分析 57 4.4 ATLAS (Silvaco)模擬軟體分析 58 4.4.1 ATLAS (Silvaco)模擬軟體簡介 58 4.4.2 傳統BC結構元件模擬 59 4.4.3 平面化BC結構元件模擬 60 第五章 結論與未來展望 106 5.1 結論 106 5.2 未來工作與展望 108

    [1] T. Ji, J. Xie, and V. K. Varadan, “Design of pentacene thin film transistors on flexible substrates,” Proceedings of SPIE, Vol. 5763, pp. 77-83, (2005).

    [2] M. Zirkl, A. Haase, A. Fian, H. Schön, C. Sommer, G. Jakopic, G. Leising, B. Stadlober, I. Graz, N. Gaar, R. Schwödiauer, S. Bauer-Gogonea, S. Bauer, “Low-voltage organic thin-film transistor with high-k nanocomposite gate dielectrics for flexible electronics and optothermal sensors” Advanced Materials, Vol. 19, pp. 2241-2245, (2007).

    [3] X. H. Zhang, S. P. Tiwari, S. J. Kim, and B. Kippelen, “Low-Voltage pentacene organic field-effect transistors with high-k HfO2 gate dielectrics and high stability under bias stress,” Applied Physics Letters, Vol. 95, pp. 223302, (2009).

    [4] F. M. Li, A. Nathan, Y. Wu and B. S. Ong, “Organic thin-film transistor integration using silicon nitride gate dielectric,” Applied Physics Letters, 90, pp. 133514, (2007).

    [5] S. H. Jeong, J. Nishii, H. R. Park, J. K. Kim, and B. T. Lee, “Influene of fluorine doping on SiOxFy films prepared from a TEOS/O2/CF4 mixture using a plasma enhanced chemical vapor deposition system,” Surface and Coating Technology, Vol. 168, pp. 51-56 , (2003).

    [6] S. Kang, J. Park, S. Jung, H. J. Lee, P. Son, J. C. Kim, T. H. Yoon, and M. Yi, “Performance enhancement of organic thin-film transistors by low-energy argon ion beam treatment of gate dielectric surface,” Japanese Journal of Applied Physics, Vol. 46, No. 4B, pp. 2696-2699, (2007).

    [7] D. J. Gundlach, L. Zhou, J. A. Nichols, and T. N. Jackson, “An experimental study of contact effects in organic thin film transistors,” Journal of Applied Physics, Vol. 100, pp. 024509, (2006).

    [8] W. Kwon Kim, K. Hong, and J. L. Lee, “Enhancement of hole injection in pentacene organic thin-film transistor of O2 plasma-treated Au electrodes,” Applied Physics Letters, Vol. 89, pp. 142117, (2006).

    [9] Dipti Gupta, M. Katiyar and Deepak, “Effect of pentacene thickness on organic thin film transistors: role of pentacene/insulator interface,” Proceeding of the 14th International workshop on physics of semiconductor devices, Mumbai, India, (2007).

    [10] S. Pratontep, and M. Brinkmann, ”Correlated growth in ultrathin pentacene films on silicon oxide: Effect of deposition rate,” Physical Review B, Vol. 69, pp. 165201, (2004).

    [11] B. T. Wu, Y. U. Su, M. L. Tu, An. C. Wang, Y. S. Chen, Y. Z. Chiou, Y. T. Chiou and C. H. Chu, “Interface modification in organic thin film transistors,” Japanese Journal of Applied physics, Vol. 44, No. 4B, pp. 2783-2768, (2006).

    [12] M. McDowell, I. G. Hill, J. E. McDermott, S. L. Bernasek, and J. Schwartz, “Improved organic thin-film transistor performance using novel self-assembled monolayers,” Applied Physics Letters, Vol. 88, pp. 073505 (2006).

    [13] K. Myny, S. D. Vusser, S. Steudel, D. Janssen, R. Müller, S. D. Jonge, S. Verlaak, J. Genoe, and P. Heremans, “Self-aligned surface treatment for thin-film organic transistors,” Applied Physics Letters, Vol. 88, pp. 222103, (2006).

    [14] J. W. Lee, J. W. Chang, D. J. Kim, Y. S. Yoon, and J. K. Kim, “Performance improvement of organic thin-film transistors by electrode/pentacene interface treatment using a hydrogen plasma,” IEEE Electron Device Letters, Vol. 28, No. 5, (2007).

    [15] C. K. Song, M. K. Jung, and B. W. Koo, “Pentacene thin film transistor improved by thermal annealing,” Journal of the Korean Physical Society, Vol. 39, pp. S271-S274, (2001).

    [16] T. Ahn, H. Jung, H. J. Suk, M. H. Yi, “Effect of postfabrication thermal annealing on the electrical performance of pentacene organic thin-film transistors,” Synthetic Metals, Vol. 159, pp. 1277-1280, (2009).

    [17] A.Tsumura, H. Koezuka, T. Ando, “Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film,” Applied Physics Letters, Vol. 49, pp, 1210, (1986).

    [18] A. Assadi, C. Svensson, M. Willander, O. Ingans, “Field‐effect mobility of poly(3‐hexylthiophene),” Applied Physics Letters, Vol. 53. pp. 195, (1988).

    [19] J. Paloheimo, E. Punkka, H. Stubb, P.Kuivalainen, in Lower Dimensional Systems and Molecular Devices, Proceedings of NATO ASI, Spetses, Greece (Ed: R. M. Mertzger), Plenum, New York, (1989).

    [20] Z. Bao, A. Dodabalapur, A. J. Lovinger, “Soluble and processable regioregular poly(3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility,” Applied Physics Letters, Vol. 69, pp. 4108, (1996).

    [21] H. Sirringhaus, N. Tessler, R. H. Friend, “Integrated Optoelectronic Devices Based on Conjugated Polymers,” Science, Vol. 280, pp. 1741 – 1744, (1998).

    [22] F. Ebisawa, T. Kurokawa, S. Nara, “Electrical properties of polyacetylene/polysiloxane interface,” Journal of Applied Physics, Vol. 54, pp. 3255 , (1983).

    [23] J. H. Burroughes, C. A. Jones, R. H. Friend, “New semiconductor device physics in polymer diodes and transistors ,” Nature, Vol. 335, pp. 137-141, (1988).

    [24] H. Fuchigami, A. Tsumura, H. Koezuka, “Polythienylenevinylene thin‐film transistor with high carrier mobility,” Applied Physics Letters, Vol. 63, pp. 1372, (1993).

    [25] F. Garnier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Deloffre, B. Servet, S. Ries, P. Alnot, “Molecular engineering of organic semiconductors: design of self-assembly properties in conjugated thiophene oligomers,” Journal of the American Chemical Society, Vol. 115, pp. 8716, (1993).

    [26] B.Servet, G. Horowitz, S. Ries, O. Lagorsse, P. Alnot, A. Yassar, F. Deloffre, P. Srivastava, R. Hajlaoui, P. Lang, F. Garnier, “Polymorphism and Charge Transport in Vacuum-Evaporated Sexithiophene Films,” Chemistry of Materials, Vol. 6, pp. 1809, (1994).

    [27] A. Dodabalapur, L. Torsi, and H. E. Katz, “Organic Transistors: Two-Dimensional Transport and Improved Electrical Characteristics,” Science, Vol. 268, pp. 270-271, (1995).

    [28] C. D. Dimitrakopoulos, B. K. Furman, T. Graham, S. Hegde, and S. Purushothaman, "Field-Effect Transistors Comprising Molecular Beam Deposited α-ω-Di-hexyl-hexathienylene and Polymeric Insulators," Synthetic Metals, Vol. 92, pp. 47, (1998).

    [29] H. E. Katz, L. Torsi, A. Dodabalapur, “Synthesis, Material Properties, and Transistor Performance of Highly Pure Thiophene Oligomers,” Chemistry of Materials, Vol. 7, pp. 2235-2237, (1995).

    [30] R. Hajlaoui, D. Fichou, G. Horowitz, B. Nessakh, M. Constant, F. Garnier, “Organic transistors using -octithiophene and , -dihexyl- -octithiophene: Influence of oligomer length versus molecular ordering on mobility,” Advanced Material, Vol. 9, pp. 557-561, (1997).

    [31] R. Hajlaoui, G. Horowitz, F. Garnier, A. Arce-Brouchet, L. Laigre, A. Elkassmi, F. Demanze, F. Kouki, “Improved field-effect mobility in short oligothiophenes: Quaterthiophene and quinquethiophene,” Advanced Material, Vol. 9, pp. 389-391, (1997).

    [32] J. H. Schön, Ch. Kloc, B. Batlogg, “On the intrinsic limits of pentacene field-effect transistors,” Organic Electronics, Vol. 1, pp. 57-64, (2000).

    [33] Y. -Y. Lin, D. J. Gundlach, S. Nelson, T. N. Jackson, “Stacked pentacene layer organic thin-film transistors with improved characteristics,” IEEE Electron Device Letters, Vol. 18, pp. 606, (1997).

    [34] C. D. Dimitrakopoulos, A. R. Brown, A. Pomp, “Molecular beam deposited thin films of pentacene for organic field effect transistor applications,” Journal of Applied Physics, Vol. 80, pp. 2501, (1996).

    [35] Y. Y. Lin, D. J. Gundlach, T. N. Jackson, “High Mobility Pentacene Organic Thin Film Transistors,” 54th Annual Device Research Conference Digest, New York, pp. 80, (1996).

    [36] G. Horowitz, X. Peng, D. Fichou, F. Garnier, “Role of the emiconductor/insulator interface in the characteristics of π-conjugated-oligomer-based thin-film transistors ,” Synthetic Metals, Vol. 51, pp. 419-424, (1992).

    [37] R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, R. M. Fleming, “C60 thin film transistors,” Applied Physics Letter, Vol. 67, pp. 121, (1995).

    [38] J. Kastner, J. Paloheimo, and H. Kuzmany, in Solid State Sciences, edited by H. Kuzmany, M. Mehring, and J. Fink, Springer, New York, pp. 512–515, (1993).

    [39] A. R. Brown, D. M. de Leeuw, E. J. Lous, E. E. Havinga, “Organic n-type field-effect transistor,” Synthetic Metals, Vol. 66, pp. 257, (1994).

    [40] J. G. Laquindanum, H. E. Katz, A. Dodabalapur, A. J. Lovinger, “n-Channel Organic Transistor Materials Based on Naphthalene Frameworks,” Journal of the American Chemical Society, Vol. 118, pp. 11331-11332, (1996).

    [41] G. Guillaud, M. Al Sadound, M. Maitrot, “Field-effect transistors based on intrinsic molecular semiconductors,” Chemical Physics Letters, Vol. 167, pp. 503, (1990).

    [42] Z. Bao, A. J. Lovinger, J. Brown, “New Air-Stable n-Channel Organic Thin Film Transistors,” Journal of the American Chemical Society, Vol. 120, pp. 207, (1998).

    [43] H. Fuchigami, A. Tsumura, H. Koezuka, “Polythienylenevinylene thin‐film transistor with high carrier mobility,” Applied Physics Letter, Vol. 63, pp. 1372, (1993).

    [44] C. D. Dimitrakopoulos, and P. R. L. Malenfant, “Organic Thin Film Transistors for Large Area Electronics,” Advanced Material, Vol. 14, pp. 99 -117, (2002).

    [45] M. Baldo, M. Deutsch, P. Burrows, H. Gossenberger, M. Gerstenberg, V. Ban, and S.Forrest, “Organic Vapor Phase Deposition,” Advanced Material, Vol.10, pp.234-238, (1998).

    [46] E. M. Conwell, “Impurity Band Conduction in Germanium and Silicon,” Physical Review Letters, Vol. 103, pp. 51-61, (1956).

    [47] N. F. Mott, “ON THE TRANSITION TO METALLIC CONDUCTION IN SEMICONDUCTORS,” Canadian Journal of Physics. Vol. 34, pp. 1356, (1956).

    [48] S. Locci, “Modeling of Physical and Electrical Characteristics of Organic Thin Film Transistors,” Ph.D dissertation, University of Cagliari, (2009).

    [49] P. G. Le Comber, and W. E. Spear, “Electronic Transport in Amorphous Silicon Films,” Physical Review Letters, Vol. 25, pp. 509-511, (1970).

    [50] 郭家瑋,「有機薄膜電晶體之載子傳輸特性研究」,博士論文,國立成功大學,台南 (2006).

    [51] 倪偵翔,「可溶性有機薄膜電晶體材料之開發」,碩士論文,國立中央大學,桃園 (2006).

    [52] R Ye, M. Baba, K. Suzuki, Y. Ohishi, K. Mori, “Effects of O2 and H2O in electrical characteristics of pentacene thin film transistors,” Thin Solid Films, Vol. 464-465, pp. 437-440, (2004).

    [53] D. Kumaki, T. Umeda, and S. Tokito, “Influence of H2O and O2 on threshold voltage shift in organic thin-film transistors: Deposition of SiOH on SiO2 gate-insulator surface,” Applied Physics Letter, Vol. 92, pp. 093309, (2008).

    [54] Y. H. Noh, Y. Park, S. M. Seo, and H. H. Lee, “Root cause of hysteresis in organic thin film transistor with polymer dielectric,” Organic Electronics, Vol. 7, pp. 271-275, (2006).

    [55] Y. Roichman, and N. Tessler, “Structures of polymer field-effect transistor: Experimental and numerical analyses,” Applied Physics Letter, Vol. 80, pp. 151, (2002).

    [56] I. Kymissis, C. D. Dimitrakopoulos, and S. Purushothaman, “High-Performance Bottom Electrode Organic Thin-Film Transistors,” IEEE Transactions on electron devices, Vol. 48, No. 6, (2001).

    [57] G. B. Blanchet, C. R. Fincher, and M. Lefenfeld, “Contact resistance in organic thin film transistors,” Applied Physics Letters, Vol. 84, No. 2, (2004).
    [58] S. M. Sze, Physics of Semiconductor Devices, Wiley, New York, CH. 7, (1981).

    [59] A. R. Brown, C. P. Jarrett, D. M. de Leeuw and M. Matters, “Field-eddect transistor made from solution-procceed organic semiconductors”, Synthetic Metals, Vol. 88, pp. 37-55, (1997).

    [60] R. A. Street, D. Knipp, and A. R. Völkel, “Hole transport in polycrystalline pentacene transistors,” Applied Physics Letters, Vol. 80, pp. 1658, (2002).

    [61] M. Xu, M. Nakamura, and K. Kudo, “Thickness dependence of mobility of pentacene planar bottom-contact organic thin-film transistors,” Thin Solid Film, Vol. 516, pp. 2776-2778, (2008).

    [62] M. Xu, M. Nakamura, M. Sakai, and K. Kudo, “High-performance bottom-contact organic thin-film transistors with controlled molecule-crystal/electrode interface,” Advanced Materials, Vol. 19, pp. 371-375, (2007).

    [63] J. B. Lee, P. C. Chang, J. A. Liddle, and V. Subramanian, “10-nm Channel length pentacene transistors,” IEEE transactions on electron devices, Vol. 52, No. 8, (2005).

    [64] P. V. Necliudov, M. S. Shur, D. J. Gundlach, and T. N. Jackson, “Contact resistance extraction in pentacene thin film transistors,” Solid-State Electronics, Vol. 47, pp. 259–262 , (2003).

    [65] H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C. D.Sheraw, J. A. Nichols, and T. N. Jackson, “Contact resistance in organic thin film transistors,” Solid-State Electronics, Vol. 47, pp. 297–301, (2003).

    [66] S. Schienert, G. Paasch, T. Lindler, “, Relevance of organic field effect transistor models: Simulation vs. experiment,” Synthetic Metals, Vol. 137, pp. 1451, (2003).

    [67] S. Scheinert, G. Paasch, M. Schrodner, “Subthreshold characteristics of field effect transistors based on poly(3-dodecylthiophene) and an organic insulator,” Journal of Applied Physics, Vol. 92, pp. 330, (2002).

    QR CODE