簡易檢索 / 詳目顯示

研究生: 戴誌韋
JHIH-WEI DAI
論文名稱: 利用表面處理提升金屬玻璃基材之彎曲性質研究
Bending Property Improvements of Bulk Metallic Glass by Surface Treatments
指導教授: 朱瑾
Jinn P. Chu
口試委員: 徐慶琪
Ching-Chi Hsu
鄭憲清
Jason Shian-Ching Jang
李志偉
Jyh-Wei Lee
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 130
中文關鍵詞: 刮痕金屬玻璃薄膜金屬玻璃退火處理抗彎性質
外文關鍵詞: Scratch, Metallic glass thin film, Metallic glass, Annealing treatment, Bending property
相關次數: 點閱:275下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本研究主要目標是探討金屬玻璃基材表面改質(如鍍層、刮痕與退火處理等),改質其金屬玻璃基材四點抗彎時的張應力面,從而提高金屬玻璃塊材之彎曲韌性。
    在先前研究中,在鋯基金屬玻璃塊材濺鍍厚度為200 nm之鋯基金屬玻璃薄膜和數個nm之Ti黏著層,經由四點彎曲試驗後可發現其彎曲應力值從~2.2提高至~3.9GPa。所以當濺鍍鋯基金屬玻璃薄膜和黏著層時,其應力值會大幅度的增加 (增加約77%),應變能(Strain energy)亦巨幅增加約~10倍,且表面應變(surface strain)從未鍍膜的0%增為12~14%,因而試片有塑性變形的產生。其中原因為在表面產生剪切帶時,張力的表面即會產生伸長的效應;剪切帶的數量隨塑性變形的增加而增加,其剪切帶間隙(shear band spacing)約為~50 μm。隨後,再進一步形成一條主要之剪切帶或裂紋。
    鋯基金屬玻璃薄膜擁有高韌性以及高強度之性質,從而可以防止剪切帶的傳播,因此提高其基材之韌性。鋯基金屬玻璃薄膜有良好的性質可以阻擋金屬玻璃基材所產生之多數微小的剪切帶,進而防止金屬玻璃基材之剪切帶的傳播來防範全面性的破裂,由此提高其金屬玻璃基材之抗彎韌性。
    在這項研究中,金屬玻璃基材經退火處理後,基材結構仍然為非晶結構,其退火溫度在玻璃轉換溫度下,持溫時間為一分鐘。在鋯基金屬玻璃塊材之張應力面上,利用砂紙#4000號製造出兩方向細緻的刮痕,其刮痕方向與試片長邊夾角60o,並利用原子力顯微鏡量測其粗糙約為13 nm,經由四點彎曲試驗後可發現其抗彎強度值從~1.3提高至~1.9GPa。所以當鋯基金屬玻璃基材經由製造刮痕與退火處理後,其抗彎強度會大幅度的增加 (增加約為46%),應變能(Strain energy)亦幅增加至~2倍,且表面延伸率(surface strain)從未鍍膜的0%則增為1.7%,因而試片有塑性變形的產生。其中原因為在表面產生剪切帶時,受張力的表面即會產生變形的效應;剪切帶的數量隨塑性變形的增加而增加。隨後,再進一步形成一條主要之剪切帶或裂紋。
    在鋯基金屬玻璃表面製造均勻刮痕並做退火處理,其刮痕能夠使剪切帶均勻生長在試片的表面上,從而可以防止單一剪切帶的產生,進而避免其提早破裂而增加其抗彎強度。採用低於玻璃轉換溫度的退火處理,能使刮痕所產生的殘留應力消除,也可提高其金屬玻璃基材之抗彎韌性。


    Abstract
    The primary objectives of this study are to investigate the effects of surface modifications (such as coatings and homogenous scratches) on bending properties of the bulk metallic glass substrate (BMG).
    In previous study, the Zr-based BMG substrate was coated with 200 nm thickness Zr-based thin film and a few nanometer thick Ti buffer layer, and its maximum four-point bending stress was improved noticeably from ~2.2 to ~3.9 GPa, an increase of ~77%. The surface energy and surface strain are also significantly improved ~10 folds and to 12~14%, respectively.
    As a result, the occurrence of the shear bands on the tension surface can create surface offsets, which serve as potential crack-initiation sites. Subsequently, more primary, secondary and tertiary shear bands are formed to accommodate large bending strains. The shear band spacing is ~50 μm for the MGTF/Ti-coated BMG substrate. The high ductility and strength of MGTF can prevent the shear band formations which can enhance its bending property. The good ductility of the MGTF can be attributed to the multiplication of the shear bands in the substrate, which prevents a catastrophic failure by primary shear band formations and increases the ductility of the Zr-based BMG substrate.
    In this study, Annealing below Tg for a short period of time does not change Zr-based BMG microstructure, while it only releases surface residual stress caused by the scratches. It may be the key factor of bending property improvement achieved. The Zr-based BMG substrate was scratched in two directions (angles of 60o and 120o between scratch lines and substrate long side) by #4000 SiC sand paper (fine scratches) and annealed below Tg. This sample obviously shows high bending strength after scratching and annealing.
    The Zr-based BMG samples with scratches and annealing treatment have a maximum four-point bending strength increase noticeably from ~1.3 to ~1.9 GPa, an increase of ~46%. The strain energy and surface strain are also significantly improved ~2 folds and to 1.7%, respectively.
    As a result, the #4000 scratches absorb energy homogenously and avoid fatal major shear bands to form easily in the substrate. The shear bands this formed follow the scratch marks and propagated homogenously on the tensile surface, yielding increases in the bending strength. The annealing temperature of metallic glass below Tg leads to transformation of its structure towards a more relaxed state. The annealing release the stress concentrated on scratches which may lead to an easily fatal crack formation. The improved bending properties due to the scratches and annealing can be attributed to the multiplication of the shear bands, which prevents a catastrophic failure by primary shear band formations.

    Contents 摘要 I Abstract III Contents VI List of Tables VIII List of Figures IX Chapter 1 Introduction 1 Chapter 2 Background 3 2.1 Bulk Metallic Glasses 3 2.1.1 Development of Bulk Metallic Glasses 3 2.1.2 Supercooled Liquid Region (SCLR) 5 2.1.3 Glass Forming Ability (GFA) 6 2.1.4 Zr-based Bulk Metallic Glass 6 2.2 Mechanical Properties of BMG 8 2.2.1 Atomic Structure of Metallic Glasses 8 2.2.2 Free Volume and Shear Transformation Zones 9 2.2.3 Shear Band Formation upon Loading 12 2.3 Mechanical Property Improvements of Metallic Glass 21 2.4 Bending Test 29 2.5 Metallic Glasses Thin Film (MGTF) 32 2.5.1 Mechanical Properties 34 2.5.2 Electrical Resistivity 34 2.5.3 Adhesion Properties 35 2.6 Physical Vapor Deposition- Sputtering and Vacuum Technology 38 2.7 Objectives of the Study 41 Chapter 3 Experimental Procedures 43 3.1 Target and BMG Substrate Preparation 43 3.1.1 BMGs Coated with Thin Film 43 3.1.2 Uncoated BMGs 43 3.2 Preparation of Sample 45 3.2.1 Preparation of Metallic Thin Film 45 3.2.2 Preparation of scratch 48 3.3 Four-Point Bend Test 50 3.3.1 BMGs Coated with Thin Film 50 3.3.2 BMGs Uncoated 50 3.4 Material Characterizations 53 3.4.1 Electron Probe Micro-Analysis (EPMA) 53 3.4.2 Differential Scanning Calorimetry (DSC) 53 3.4.3 X-ray Diffractometry (XRD) 54 3.4.4 Scanning Electron Microscopy (SEM) 54 3.4.5 Transmission Electron Microscopy (TEM) 55 3.4.6 Adhesion Measurement 55 3.4.7 Heat Treatment 55 3.4.8 Nano-indentation 56 3.4.9 Atomic force microscopy (AFM) 56 Chapter 4 Results and Discussion 57 4.1 Chemical Analyses (EPMA) [41] 57 4.2 Structural characterization of substrates and MGTF 57 4.2.1 BMGs Coated With Thin Film [41] 57 4.2.2 Uncoated BMG 60 4.3 Thermal Analyses 61 4.3.1 Thin Film [41] 61 4.3.2 BMG Substrate 63 4.4 Nanoindentation Measurement of BMG Substrates 64 4.5 Adhesion Test of MGTF on BMG Substrate 66 4.6 Atomic Force Microscopy (AFM) Analyses of Various Samples 68 4.7 Bending Stress-surface Strain Result of BMG Substrate 71 4.7.1 BMGs Coated With Thin Film [41] 71 4.7.2 Comparison of Other Works 75 4.7.3 Uncoated BMGs 78 4.8 Transmission Electron Microscopy (TEM) Analysis of Coated BMGs 85 4.9 Simulation Under Bending 94 4.10 Scanning Electron Microscopy (SEM) Observations 98 4.10.1 Microstructure on Tension Surface of Uncoated BMGs 98 4.10.2 Shear Band Formation of Uncoated BMGs 99 4.10.3 Fractography of Uncoated BMGs 104 Chapter 5 Conclusions and Future Works 107 5.1 Conclusions 107 5.2 Future works 108

    References

    1. W. H. Wang, C. Dong and C. H. Shek, Mater. Sci. Eng. 44, 45–89 (2004).
    2. F. X. Qin, X. M. Wang and A. Inoue, Intermetallics 15, 1337–1342 (2007).
    3. H. S. Chen, Rep. Prog. Phys. 43, 353 (1980).
    4. A. L. Greer, H. W. Kui and D. Turnbull, Appl. Phys. Lett. 45, 615 (1984).
    5. H. W. Kui and D. Turnbull, Appl. Phys. Lett. 47, 796–797 (1985).
    6. A. Inoue, Acta Mater. 48, 279–306 (2000).
    7. J. F. Loffler, Intermetallics, 11, 529–540 (2003).
    8. A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, Mater. Trans. 33, 937 (1992).
    9. H. W. Jeong, S. Hata and A. Shimokohbe, The 15th IEEE international conference MEMs (2002).
    10. H. Men, W. T. Kim and D. H. Kim, Mater. Trans. 44, 1647–1650 (2003).
    11. H. Men, W. T. Kim and D. H. Kim, Mater. Trans. 44, 2141 (2003).
    12. A. Inoue and W. Zhang, Appl. Phys. Lett. 83, 2351–2353 (2003).
    13. A. Inoue and W. Zhang, J. Mater. Res. 18, 1435 (2003).
    14. T Zhang and T.J Masumoto, J. Non-Cryst. Solids 473, 156–158 (1993).
    15. A. Inoue, T. Shibata and T. Zhang, Mater. Trans. 36, 1420–1426 (1995).
    16. H. A. Davies In: F. E. Luborsky, Editor, Amorphous Metallic Alloys, Butterworths, London, 8 (1983).
    17. R. Doglione, S. Spriano and L. Battezzati, Nanostructured Mater. 8, 447–456 (1997).
    18. A. Inoue, T. Zhang and Y. H. Kim. Mater. Trans. 38, 749 (1997).
    19. A. Inoue, Pergamon Materials Series 2, 375–415 (1999).
    20. R. Vaidyanathan, M. Dao, G. Ravichandran and S. Suresh, Acta Mater. 49, 3781–3789 (2001).
    21. M. Stoicaa, N. V. Steenbergeb, J. Bednarcik , N. Mattern, H. Franz and Jurgen Eckert, J. Alloy. Compd. 506, 85–87 (2010).
    22. F. X. Qin, X. M. Wang and A. Inoue, Intermetallics 15, 1337–1342 (2007).
    23. N. Mattern, J. Non-Cryst. Solids 353, 1723–1731 (2007).
    24. O. N. Senkov and D. B. Miracle, J. Non-Cryst. Solids 317, 34–39 (2003).
    25. A. Inoue, T. Negishi, H. M. Kimura, T. Zhang and A. R. Yavari, Mater. Trans. J. Immunol. Methods 39, 318–321(1998).
    26. M. W. Chen, I. Dutta, T. Zhang, I. Inuoe and T. Sakurai, Appl. Phys. Lett. 79, 42 (2001).
    27. D. B. Miracle, Acta Mater. 54, 4317 (2006).
    28. M. Chen, Annu. Rev. Mater. Res. 38, 445–69 (2008).
    29. Frans Spaepen, Acta Mater. 25, 407–415 (1976).
    30. F. Spaepen, Acta Mater. 25, 407–15 (1977).
    31. A. Argon, Acta Metall. 27, 47–58 (1979).
    32. P. S. Steif, F. Spaepen and J. W. Hutchinson, Acta Metall. 30, 447–55 (1982).
    33. M. L. Falk and J. S. Langer, Phys. Rev. E. 57, 7192 (1998).
    34. L. Wang, H. Bei, Y. F. Gao, Z. P. Lu and T. G. Nieh, Acta Mater. 59, 2858–2864 (2011).
    35. Y. H. Liu and W. H. Wang, J. Non-Cryst. Solids 354, 5570–5572 (2008).
    36. H. Bei, S. Xie and E. P. George, Phys. Rev. Lett. 96, 105503 (2006).
    37. R. D. Conner, W. L. Johnson, N. E. Paton and W. D. Nix, J. Appl. Phys. 94, 904–911, (2003).
    38. J. W. Liu, Q. P. Cao, L. Y. Chen, X. D. Wang and J. Z. Jiang, Acta Mater. 58, 4827–4840 (2010).
    39. Q. P. Cao, J. W. Liu, K. J. Yang, F. Xu, Z. Q. Yao, A. Minkow, H. J. Fecht, J. Ivanisenko, L. Y. Chen, X. D. Wang, S. X. Qu and J. Z. Jiang, Acta Mater. 58, 1276–1292 (2010).
    40. H. W. Xie, Y. C. Li, D. K. Yang, D. Hodgson and C. E. Wen, J. Alloy. Compd. 475, 501–505 (2009).
    41. B. S. Houng, Bending Toughness and Ductility Improvements of Bulk Metallic Glass by a Zr-based Glass-forming Film, Master Thesis, NTUST (2010).
    42. Y. H. Liu, C. T. Liu, A. Gali, A. Inoue and M. W. Chen, Intermetallics 18, 1455–1464 (2010).
    43. J. T. Fan, Z. F. Zhang, S. X. Mao, B. L. Shen and A. Inoue, Intermetallics 17, 445–452 (2009).
    44. H. M. Chen, C. J. Lee, J. C. Huang, T. H. Li and J. S. C. Jang, Intermetallics 18, 1240–1243 (2010).
    45. N. Van Steenberge, A. Concustell, J. Sort, J. Das, N. Mattern, A. Gebert, S. Surinach, J. Eckert and M. D. Baro, Mat. Sci. Eng. A-Struct. 491, 124–130 (2008).
    46. M. Stoica, N. Van Steenberge, J. Bednarcik, N. Mattern, H. Franz and J. Eckert, J. Alloy. Compd. 506, 85–87 (2010).
    47. F. X. Qin, X. M. Wang and A. Inoue, Intermetallics 15, 1337–1342 (2007).
    48. Y. Zhang, W. H. Wang and A. L. Greer, Nat. Mater. 5, 857–860 (2006).
    49. S. B. Qiu and K. F. Yao, Appl. Surf. Sci. 255, 3454–3458 (2008).
    50. R. D. Conner, Y. Li, W. D. Nix and W. L. Johnson, Acta Mater. 52, 2429–2434 (2004).
    51. A. Inoue, K. Amiya, I. Yoshi, H. M. Kimura and T. Masumoto, Mater. Trans. 35, 485–488 (1994).
    52. A. Inoue, A. Katsuya, A. Amiya and T. Masumoto, Mater. Trans. 36, 802–809 (1995).
    53. Y.H. Liu and W.H. Wang, J. Non-Cryst. Solids 354, 5570–5572 (2008).
    54. P. G. Zielinski and D. G. Ast, Philosophical Magazine A 48, 811-824 (2006).
    55. F. X. Liu, P. K. Liaw, G. Y. Wang, C. L. Chiang, D. A. Smith, P. D. Rack, J. P. Chu and R. A. Buchanan, Intermetallics 14, 1014–1018 (2006).
    56. R. B. Schwarz and W. L. Johnson, Phys. Rev. Lett. 51, 415 (1983).
    57. S. Hata, K. Sato, and A. Shimokohbe, SPIE International Symposium on Micro-electronics and Micro-Electro-Mechanical Systems MICRO /MEMS'99, 97, 3892, (1999).
    58. Y. D. Liu, S. Hata, K. Wada and A. Shimokohbe, Jpn. J. Appl. Phys. 40, 5382–5388 (2001).
    59. J. P. Chu, S. F. Wang, S. J. Lee and C. W. Chang, J. Appl. Phys. 88, 6086 (2000).
    60. J. P. Chu, C. T. Liu, T. Mahalingam, S. F. Wang, M. J. O’Keefe, B. Johnson and C. H. Kuo, Phys. Rev. B 69, 113410 (2004).
    61. W. Heinke, A. Leyland, A. Matthews, G. Berg, C. Friedrich and E. Broszeit, Thin Solid Films 270, 431–438 (1995).
    62. E. Gemelli, A. Scariot N. Heriberto and A. Camargo, Materials Research 10, 241–246 (2007).
    63. C. V. Falub, G. Thorwarth, C. Affolter, U. Muller, C. Voisard and R. Hauert, Acta Biomater. 5, 3086–3097 (2009).
    64. A. Shibata, M. Sone and Y. Higo, Scripta Mater. 62, 309–312 (2010).
    65. L. Wang, H. Bei, T. L. Li, Y. F. Gao, E. P. George and T. G. Nieh, Acta Mater. 59, 2858–2864 (2011).
    66. F. X. Liu, P. K. Liaw, G. Y. Wang, C. L. Chiang, D. A. Smith, P. D. Rack, J. P. Chu and R.A. Buchanan, Intermetallics 14, 1014–1018 (2006).
    67. H. M. Chen, J. C. Huang, S. X. Song, T. G. Nieh and J. S. C. Jang, Appl. Phys. Lett. 94, 141914 (2009).
    68. A. Slipenyuk and J. Eckert, Scripta Mater. 50, 39–44 (2004).

    無法下載圖示 全文公開日期 2016/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE