簡易檢索 / 詳目顯示

研究生: Ayu Marsha Alviani
Ayu Marsha Alviani
論文名稱: 利用噴霧熱裂解法製備分析Ce3+和Mn2+添加非晶CaAl2O4螢光粉
Preparation and characterization of glassy Ce3+and Mn2+ -doped CaAl2O4 powder using spray pyrolysis
指導教授: 施劭儒
Shao-Ju Shih
口試委員: Yee-Wen Yen
Yee-Wen Yen
Chin-Yang Yu
Chin-Yang Yu
Chen-Hao Wang
Chen-Hao Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 104
中文關鍵詞: 鋁酸鈣Ce3+/Mn2+發光非晶螢光粉
外文關鍵詞: Calcium aluminate, Ce3+/Mn2+, luminescence
相關次數: 點閱:243下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無機發光材料(亦可稱為螢光粉)已被廣泛應用於諸多研究之中,例如安全標籤、緊急信號、固態照明以及發光二極體中(LED)。而在現代,用於安全標籤的螢光粉,可以在流通貨幣、護照或是其他重要文件中皆可發現它的身影。而在美國、英國、德國以及日本等國家,磷光油墨已被利用於郵票的印刷中。此外,Shih團隊中於非晶矽酸鋁二鈣磷光體材料之研究提及此一材料具有良好的活化劑顆粒分佈。因此,對於目前應用以及非晶相的優勢相比,玻璃螢光粉將於本研究中進一步探討。

    在本研究中,使用鋁酸鈣做為本研究的主體材料,因其具有發光時間長、化學穩定性佳、毒性低、成本低以及量子效率高等特性,此外於文獻中,透過將敏化劑能夠有效提高活化劑的發光強度,如Wang團隊成功地合成Ce3+/Mn2+摻雜鋁酸鈣螢光粉,以提高其磷光性質。而在Teixera團隊中,採用兩種不同的方法製備出Ce3+/Mn2+摻雜矽酸鋁二鈣螢光粉,透過激發以產生綠光與藍光。因此,於本研究合成非晶Ce3+/Mn2+摻雜鋁酸鈣螢光粉,以95%N2/ 5%H2混合氣體持溫800℃的退火條件下將Ce4+還原為Ce3+,以即將Mn4+還原為Mn2+。藉由X光繞射儀(XRD)來確認本實驗中Ce3+/Mn2+摻雜鋁酸鈣螢光粉之相組成,並透過場發式電子顯微鏡(SEM)測定材料的表面形貌,最後使用光致發光光譜(PL)以273nm為分析波長進行檢驗。由實驗結果顯示,0.5%Ce3+/1%Mn2+摻雜鋁酸鈣螢光粉具有較強的發光強度。


    Inorganic luminescent materials (also known as phosphors), have been extensively studied in numerous application such as security label, emergency signalling, solid state, and laser light-emitting diodes (LEDs). Nowadays, phosphor for security labels can be found in money, passport, and other important paper. In several countries such as US, Great Britain, Germany and Japan, phosphorescent ink have been used in printing of all kind of postage stamps. In addition, Shih et al determined that amorphous gehlenite phosphor material have a good activator particle distribution. Therefore, as compared to the application and amorphous phase superiority, glassy phosphor will be further investigated in this study. In this research calcium aluminate (CaAl2O4) is used because it has special characteristics such as long after glow time, good chemical stability, low toxicity, low cost, and high quantum efficiency in the visible region. In some research, the activator are mixed to enhance the photoluminescence properties. For example, Wang successfully synthesized CaAl2O4 doped Ce3+, Mn2+ to produce long lasting phosphorescence. Ce3+, Mn2+ -doped Ca2Al2SiO7 were done to emit two colors, which are green and blue, using two different methodologies by Teixera. Hence, in this study, Ce3+, Mn2+ doped with CaAl2O4 were synthesized with amorphous phase. Annealing temperature at 800oC in 95%N2/ 5%H2 condition was used to reduce Ce4+ to Ce3+ and Mn4+ to Mn2+. The obtained phosphor CaAl2O4:Ce3+, Mn2+ phase was characterized by X-ray diffraction technique (XRD). The surface morphology was determined by scanning electron microscopy (SEM). Also photoluminescence spectra (PL), characterization were done with excitation at 273 nm. The maximum composition to increase the intensity of the blue-green light is 0.5%Ce3+ and 1%Mn2+ in CaAl2O4.

    CONTENT 摘要 iv ABSTRACT v ACKNOWLEDGEMENTS vi CONTENT vii LIST OF TABLES x LIST OF FIGURES xi CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Objective 2 CHAPTER 2 LITERATURE REVIEW 3 2.1. Luminescence material 3 2.1.1 Afterglow duration 3 2.1.2 Light source mechanism 5 2.2 Luminescence mechanism 9 2.3 Luminescent security label application 13 2.4 CaAl2O4 characteristics 14 2.5 Activator characteristics 16 2.5.1 Cerium 16 2.5.2 Manganese 16 2.6 Spray pyrolysis method 19 CHAPTER 3 EXPERIMENTAL METHOD 22 3.1 Chemicals 22 3.2 Experimental procedure 22 3.3 Material preparation 23 3.3.1 Adjusting annealing temperature 23 3.3.2 Adjusting atmospheric gases condition 25 3.3.3 Variation of cerium and manganese composition 28 3.4 Materials characterization 30 3.4.1 X-ray diffraction 30 3.4.2 Scanning electron microscope 30 3.4.3 Spectrofluorometer 30 CHAPTER 4 RESULTS 32 4.1 Adjusting temperature 32 4.1.1 Phases analysis 32 4.1.2 Morphology analysis 33 4.1.3 Photoluminescence analysis 36 4.2 Adjusting atmospheric gases 37 4.2.1 Phases analysis 38 4.2.2 Morphology analysis 39 4.2.3 Photoluminescence analysis 41 4.3 Variation of cerium 42 4.3.1 Phases analysis 42 4.3.2 Morphology analysis 44 4.3.3 Photoluminescence analysis 49 4.4 Variation of manganese 51 4.4.1 Phases analysis 52 4.4.2 Morphology analysis 54 4.4.3 Photoluminescence analysis 57 CHAPTER 5 DISCUSSION 61 5.1 Adjusting the temperature 61 5.1.1 Crystallization of as received Ce3+ and Mn2+-doped CaAl2O4 powder…........................................................................................................61 5.1.2 Morphological analysis 62 5.1.3 Photoluminescence analysis 63 5.2 Adjusting atmospheric gases 65 5.2.1 Crystallization of as received Ce3+ and Mn2+-doped CaAl2O4 powder .........................................................................................................65 5.2.2 Morphological analysis 67 5.2.3 Photoluminescence analysis 67 5.3 Variation of Ce composition 69 5.3.1 Crystallization of as received Ce3+ and Mn2+-doped CaAl2O4 powder............................................................................................................69 5.3.2 Morphological analysis 69 5.3.3 Photoluminescence analysis 70 5.4 Variation of Mn composition 72 5.4.1 Crystallization of as received Ce3+ and Mn2+-doped CaAl2O4 powder .........................................................................................................73 5.4.2 Morphological analysis 73 5.4.3 Photoluminescence analysis 74 CHAPTER 6 CONCLUSIONS 77 CHAPTER 7 FUTURE WORKS 78 REFERENCES 79

    [1] S.-J. Shih, Y.-C. Lin, S.-H. Lin, P. Veteška, D. Galusek, W.-H. Tuan, Preparation and characterization of Eu-doped gehlenite glassy particles using spray pyrolysis, Ceramics International, 42 (2016) 11324-11329.
    [2] R. Kubrin, Nanophosphor coatings: Technology and applications, opportunities and challenges, KONA Powder and Particle Journal, 31 (2014) 22-52.
    [3] W. Yen, S. Shionoya, H. Yamamoto, Phosphor handbook CRC press, Boca Raton, (2007).
    [4] K. Venkatachalaiah, H. Nagabhushana, G. Darshan, R. Basavaraj, B.D. Prasad, Novel and highly efficient red luminescent sensor based SiO2@ Y2O3: Eu3+, M+ (M+= Li, Na, K) composite core–shell fluorescent markers for latent fingerprint recognition, security ink and solid state lightning applications, Sensors and Actuators B: Chemical, 251 (2017) 310-325.
    [5] B. Shashikala, H. Premkumar, G. Darshan, H. Nagabhushana, S. Sharma, S. Prashantha, H. Nagaswarupa, Synthesis and photoluminescence studies of an orange red color emitting novel CaAl2O4: Sm3+ nanophosphor for LED Applications, Materials Today: Proceedings, 4 (2017) 11820-11826.
    [6] J.R. Mercury, A. De Aza, P. Pena, Synthesis of CaAl2O4 from powders: Particle size effect, Journal of the European Ceramic Society, 25 (2005) 3269-3279.
    [7] G. Darshan, H. Premkumar, H. Nagabhushana, S. Sharma, S. Prashantha, H. Nagaswarup, B.D. Prasad, Blue light emitting ceramic nano-pigments of Tm3+ doped YAlO3: Applications in latent finger print, anti-counterfeiting and porcelain stoneware, Dyes and Pigments, 131 (2016) 268-281.
    [8] D. Massiot, D. Trumeau, B. Touzo, I. Farnan, J.-C. Rifflet, A. Douy, J.-P. Coutures, structure and dynamics of CaAl2O4 from liquid to glass: A high-temperature 27Al NMR time-resolved study, The Journal of Physical Chemistry, 99 (1995) 16455-16459.
    [9] S. Shiri, M. Abbasi, A. Monshi, F. Karimzadeh, Synthesis of the CaAl2O4 nanoceramic compound using high-energy ball milling with subsequent annealing, Advanced Powder Technology, 25 (2014) 338-341.
    [10] M.R. Revupriya, P S Anjana, R Divya, N. Gopakumar, Synthesis and characterization of CaAl2O4 Dy3+ ceramic, International Journal of Advance in Science and Engineering, 03 (2017) 6.
    [11] A.H. Wako, Preparation and properties of long afterglow CaAl2O4 phosphors activated by rare earth metal ions, University of the Free State Republic of South Africa, 2011.
    [12] G.C. Mishra, K.K. Satapathy, S.J. Dhoble, R.S. Kher, Urea assisted self combustion synthesis of CaAl2O4: Eu phosphor and its mechanoluminescence characterization, New Journal of Chemistry, 41 (2017) 2193-2197.
    [13] V.R.S. Brito, R J dos Santos, P N M dos Anjos, Thermal and optical analysis of the dopan cerium calcium aluminate obtained by the gel process using ethylenediamine tetraacetic acid, Biological and Chemical Research, 3 (2016) 5.
    [14] H. Xu, L. Wang, X. Ma, R. Houzong, Q. Sun, D. Qu, J. Shi, A novel Mn (II)-based green phosphor and its self-reduction mechanism, Journal of Luminescence, 194 (2018) 303-310.
    [15] R. Cao, F. Zhang, C. Cao, X. Yu, A. Liang, S. Guo, H. Xue, Synthesis and luminescence properties of CaAl2O4: Mn4+ phosphor, Optical Materials, 38 (2014) 53-56.
    [16] T. Sathaporn, S. Niyomwas, Synthesis and characterization of MAl2O4 (M= Ba, Ca, Sr) phosphor by self-propagating high temperature synthesis, Energy Procedia, 9 (2011) 410-417.
    [17] T. Katsumata, T. Nabae, K. Sasajima, T. Matsuzawa, Growth and characteristics of long persistent SrAl2O4-and CaAl2O4-based phosphor crystals by a floating zone technique, Journal of Crystal Growth, 183 (1998) 361-365.
    [18] Y. Wei, Z. Wu, Y. Jia, Y. Liu, Piezoelectrically-induced stress-luminescence phenomenon in CaAl2O4: Eu2+, Journal of Alloys and Compounds, 646 (2015) 86-89.
    [19] M. Freeda, T. Subash, Comparision of photoluminescence studies of lanthanum, terbium doped calcium aluminate nanophosphors (CaAl2O4: La, CaAl2O4: Tb) by sol-gel method, Materials Today: Proceedings, 4 (2017) 4302-4307.
    [20] X.-J. Wang, D. Jia, W.M. Yen, Mn2+ activated green, yellow, and red long persistent phosphors, Journal of Luminescence, 102 (2003) 34-37.
    [21] V. Teixeira, P. Montes, M. Valerio, Structural and optical characterizations of Ca2Al2SiO7: Ce3+, Mn2+ nanoparticles produced via a hybrid route, Optical Materials, 36 (2014) 1580-1590.
    [22] N. Suriyamurthy, B. Panigrahi, Luminescence of BaAl2O4: Mn2+, Ce3+ phosphor, Journal of Luminescence, 127 (2007) 483-488.
    [23] K.N. Shinde, S. Dhoble, H. Swart, K. Park, Basic mechanisms of photoluminescence, Phosphate Phosphors for Solid-State Lighting, Springer2012, pp. 41-59.
    [24] C. Ronda, Luminescence: From theory to applications. 2008, Wiley-VCH.
    [25] C.W. Tang, S.A. VanSlyke, C. Chen, Electroluminescence of doped organic thin films, Journal of Applied Physics, 65 (1989) 3610-3616.
    [26] J. Bharathan, Y. Yang, Polymer electroluminescent devices processed by inkjet printing: I. polymer light-emitting logo, Applied Physics Letters, 72 (1998) 2660-2662.
    [27] T. Igarashi, M. Ihara, T. Kusunoki, K. Ohno, T. Isobe, M. Senna, Relationship between optical properties and crystallinity of nanometer Y2O3: Eu phosphor, Applied Physics Letters, 76 (2000) 1549-1551.
    [28] T.E.o.E. Britannica, Thermoluminescence, Encyclopædia Britannica, inc. , 2015.
    [29] F.S. Ligler, C.R. Taitt, Optical biosensors: today and tomorrow, Elsevier2011.
    [30] S. Sanguinetti, M. Guzzi, M. Gurioli, Accessing structural and electronic properties of semiconductor nanostructures via photoluminescence, characterization of semiconductor heterostructures and nanostructures, Elsevier2008, pp. 175-208.
    [31] Y. Penghui, Y. Xue, Y. Hongling, T. Jiang, Z. Dacheng, Q. Jianbei, Effects of crystal field on photoluminescence properties of Ca2Al2SiO7: Eu2+ phosphors, Journal of Rare Earths, 30 (2012) 1208-1212.
    [32] G.G. Guilbault, Fluorescence: theory, instrumentation, and practice, E. Arnold1967.
    [33] S.-J. Shih, Y.-J. Chou, A. Hadush, S.-H. Lin, C.-W. Hsiao, Morphology control of Eu-doped amorphous gehlenite phosphors prepared by spray pyrolysis, Journal of nanoscience and nanotechnology, 18 (2018) 5849-5853.
    [34] K. Park, H. Kim, D. Hakeem, Effect of host composition and Eu3+ concentration on the photoluminescence of aluminosilicate (Ca,Sr)2Al2SiO7: Eu3+ phosphors, Dyes and Pigments, 136 (2017) 70-77.
    [35] K.-S. Sohn, B. Cho, H.D. Park, Y.G. Choi, K.H. Kim, Effect of heat treatment on photoluminescence behavior of Zn2SiO4: Mn phosphors, Journal of the European Ceramic Society, 20 (2000) 1043-1051.
    [36] L. Jin, L. Yuanyuan, Z. Zhiyong, Y. Junfeng, Z. Wu, Y. Jiangni, Z. Chunxue, Effect of annealing temperature on photoluminescence of ZnO/Graphene nano-films deposited by sol-gel method, Rare Metal Materials and Engineering, 46 (2017) 888-892.
    [37] M. Peng, G. Hong, Reduction from Eu3+ to Eu2+ in BaAl2O4: Eu phosphor prepared in an oxidizing atmosphere and luminescent properties of BaAl2O4: Eu, Journal of Luminescence, 127 (2007) 735-740.
    [38] S. Zhang, Y. Li, Y. Lv, L. Fan, Y. Hu, M. He, A full-color emitting phosphor Ca9Ce(PO4)7: Mn2+, Tb3+: Efficient energy transfer, stable thermal stability and high quantum efficiency, Chemical Engineering Journal, 322 (2017) 314-327.
    [39] J. Andres, R.D. Hersch, J.E. Moser, A.S. Chauvin, A new anti‐counterfeiting feature relying on invisible luminescent full color images printed with lanthanide‐based inks, Advanced Functional Materials, 24 (2014) 5029-5036.
    [40] P. Kumar, S. Singh, B.K. Gupta, Future prospects of luminescent nanomaterial based security inks: from synthesis to anti-counterfeiting applications, Nanoscale, 8 (2016) 14297-14340.
    [41] S. Yang, G. Xiao, D. Ding, Y. Ren, L. Lv, P. Yang, J. Gao, Solid-phase combustion synthesis of calcium aluminate with CaAl2O4 nanofiber structures, Ceramics International, (2018).
    [42] Y. Yuan, W. Jian, W. Jidong, L. Jing, Z. Yanan, L. Xiaoqiang, S. Xiaolei, G. Mingqiao, Structural characterization and optical properties of long-lasting CaAl2O4: Eu2+, Nd3+ phosphors synthesized by microwave-assisted chemical co-precipitation, Journal of Rare Earths, 35 (2017) 652-657.
    [43] S. Yang, G. Xiao, D. Ding, Y. Ren, L. Lv, P. Yang, J. Gao, Solid-phase combustion synthesis of calcium aluminate with CaAl2O4 nanofiber structures, Ceramics International, 44 (2018) 6186-6191.
    [44] N. Souza, D. Silva, D. Sampaio, M. Rezende, C. Kucera, A. Trofimov, L. Jacobsohn, J. Ballato, R. Silva, Laser sintering of persistent luminescent CaAl2O4: Eu2+ Dy3+ ceramics, Optical Materials, 68 (2017) 2-6.
    [45] M. Freeda, T. Subash, Optical characterization of dysporsium doped calcium aluminate nanophosphor (CaAl2O4: Dy) by sol-gel method, Materials Today: Proceedings, 4 (2017) 4290-4301.
    [46] M. Freeda, T. Subash, Photoluminescence studies of terbium doped calcium aluminate nanophosphors (CaAl2O4: Tb) synthesized by sol-gel method, Materials Today: Proceedings, 4 (2017) 4283-4289.
    [47] M. Freeda, T. Subash, Preparation and characterization of praseodymium doped calcium aluminate nanophosphor (CaAl2O4: Pr) by sol-gel method, Materials Today: Proceedings, 4 (2017) 4266-4273.
    [48] K. Satapathy, G. Mishra, R. Kher, S. Dhoble, Mechanoluminescence and thermoluminescence characterization of Tb3+ doped CaAl2O4: A theoretical and experimental study, RSC Advances, 5 (2015) 79391-79396.
    [49] C. Fu, H. Dong, C. Liu, Y. Wang, Synthesis, structure and luminescence properties of phosphor CaAl2O4 activated by Tb3+, Optoelectronics Adv. Materials Rapid Commun, 4 (2010) 73-76.
    [50] Y.H. Lin, M. Li, C.W. Nan, Z. Zhang, Tunable trap levels observed in La and Eu codoped CaAl2O4‐based phosphor, Journal of the American Ceramic Society, 90 (2007) 2992-2994.
    [51] M. Freeda, G. Suresh, Structural and luminescent properties of Eu-doped CaAl2O4 nanophosphor by sol-gel method, Materials Today: Proceedings, 4 (2017) 4260-4265.
    [52] X. Xu, X. Yu, D. Zhou, J. Qiu, A potential tunable blue-to-white-emitting phosphor CAO: Eu, Mn for ultraviolet light emitting diodes, Materials Research Bulletin, 48 (2013) 2390-2392.
    [53] D. Jia, R. Meltzer, W. Yen, W. Jia, X. Wang, Green phosphorescence of CaAl2O4: Tb3+, Ce3+ through persistence energy transfer, Applied physics letters, 80 (2002) 1535-1537.
    [54] K.-S. Lin, S. Chowdhury, Synthesis, characterization, and application of 1-D cerium oxide nanomaterials: a review, International journal of molecular sciences, 11 (2010) 3226-3251.
    [55] V. Briois, C. Williams, H. Dexpert, F. Villain, B. Cabane, F. Deneuve, C. Magnier, Formation of solid particles by hydrolysis of cerium (IV) sulphate, Journal of materials science, 28 (1993) 5019-5031.
    [56] H. Wu, Y. Hu, G. Ju, L. Chen, X. Wang, Z. Yang, Photoluminescence and thermoluminescence of Ce3+ and Eu2+ in Ca2Al2SiO7 matrix, Journal of Luminescence, 131 (2011) 2441-2445.
    [57] Z.-w. Zhang, J.-w. Hou, J. Li, X.-y. Wang, X.-y. Zhu, H.-x. Qi, R.-j. Lv, D.-j. Wang, Tunable luminescence and energy transfer properties of LiSrPO4: Ce3+, Tb3+, Mn2+ phosphors, Journal of Alloys and Compounds, 682 (2016) 557-564.
    [58] B. Cui, Z. Chen, Q. Zhang, H. Wang, Y. Li, A single-composition CaSi2O2N2: RE (RE= Ce3+/Tb3+, Eu2+, Mn2+) phosphor nanofiber mat: Energy transfer, luminescence and tunable color properties, Journal of Solid State Chemistry, 253 (2017) 263-269.
    [59] X. Meng, K. Qiu, Z. Tian, X. Shi, J. You, Z. Wang, P. Li, Z. Yang, Tunable-emission single-phase phosphors Ba3Ca2(PO4)3F: M(M= Ce3+, Eu2+, Mn2+): Crystal structure, luminescence and energy transfer, Journal of Alloys and Compounds, 719 (2017) 322-330.
    [60] Z. Zhang, H. Zhong, S. Yang, X. Chu, Tunable luminescence and energy transfer properties of Ca19Mg2(PO4)14: Ce3+, Tb3+, Mn2+ phosphors, Journal of Alloys and Compounds, 708 (2017) 671-677.
    [61] S. Park, S. Koh, H. Kim, Single-phase Ce3+–Mn2+–Tb3+ tri–codoped barium yttrium silicate phosphors, Displays, 48 (2017) 29-34.
    [62] J. Zhang, Z. Hua, H. Jiao, Investigation on photoluminescence of Ca2Gd8(SiO4)6O2 :Ce3+ ,Tb3+ ,Mn2+ phosphors, 2017.
    [63] J. Fan, J. Gou, Y. Chen, B. Yu, S. Liu, Enhanced luminescence and tunable color of Sr8CaSc(PO4)7 :Eu2+ , Ce3+ , Mn2+ phosphor by energy transfer between Ce3+ -Eu2+ -Mn2+, 2017.
    [64] F. Wang, W. Wang, Y. Jin, Photoluminescence properties of Ce3+/Mn2+ doped calcium zirconium silicate phosphors with energy transfer for white LEDs, Ceramics International, 42 (2016) 16626-16632.
    [65] X.-Y. Sun, Z. He, X. Gu, Synthesis, deep red emission and warm WLED applications of K2SiF6: Mn4+ phosphors, Journal of Photochemistry and Photobiology A: Chemistry, 350 (2018) 69-74.
    [66] M. Rong, X. Zhou, R. Xiong, N. Wang, Q. Wang, Z. Wang, Luminescent properties and application of Rb2GeF6: Mn4+ red phosphor, Materials Letters, 207 (2017) 206-208.
    [67] X. Bian, J. Zhang, White-light emission in a single-phase Ca9.3Mg0.7K(PO4)7: Eu2+, Tb3+, Mn2+ phosphor for light-emitting diodes, Journal of Luminescence, 194 (2018) 334-340.
    [68] R. Cao, Y. Ye, Q. Peng, G. Zheng, H. Ao, J. Fu, Y. Guo, B. Guo, Synthesis and luminescence characteristics of novel red-emitting Ba2TiGe2O8: Mn4+ phosphor, Dyes and Pigments, 146 (2017) 14-19.
    [69] R. Cao, W. Wang, J. Zhang, S. Jiang, Z. Chen, W. Li, X. Yu, Synthesis and luminescence properties of Li2SnO3: Mn4+ red-emitting phosphor for solid-state lighting, Journal of Alloys and Compounds, 704 (2017) 124-130.
    [70] R. Cao, J. Zhang, W. Wang, Z. Hu, T. Chen, Y. Ye, X. Yu, Preparation and photoluminescence characteristics of Li2Mg3SnO6:Mn4+ deep red phosphor, 2016.
    [71] Y. Cao, N. Liu, J. Tian, X. Zhang, Solid state synthesis and tunable luminescence of LiSrPO4: Eu2+/Mn2+/Tb3+ phosphors, Polyhedron, 107 (2016) 78-82.
    [72] X. Xu, Y. Wang, X. Yu, Y. Li, Y. Gong, Investigation of Ce–Mn energy transfer in SrAl2O4: Ce3+, Mn2+, Journal of the American Ceramic Society, 94 (2011) 160-163.
    [73] X. Chen, F. Lv, P. Li, Y. Zhang, Synthesis and tunable luminescence of RbCaGd(PO4)2: Ce3+, Mn2+ phosphors, Optical Materials, 54 (2016) 276-281.
    [74] J. Lin, Y. Hu, L. Chen, Z. Wang, S. Zhang, Luminescence and energy transfer properties of Sr3Y(PO4)3: Ce3+, Mn2+ phosphors, Physica B: Condensed Matter, 485 (2016) 39-44.
    [75] Q. Liu, H. Yin, T. Liu, C. Wang, R. Liu, W. Lü, H. You, Luminescent properties and energy transfer of CaO: Ce3+, Mn2+ phosphors for white LED, Journal of Luminescence, 177 (2016) 349-353.
    [76] W. Yang, S.-H. Kim, S. Park, Multi-color tunable Ce3+–Mn2+ cooperative Y7O6F9 vernier phosphors, Journal of Alloys and Compounds, 673 (2016) 1-7.
    [77] J. Zhou, T. Wang, X. Yu, D. Zhou, J. Qiu, The synthesis and photoluminescence of a single-phased white-emitting NaAlSiO4: Ce3+, Mn2+ phosphor for WLEDs, Materials Research Bulletin, 73 (2016) 1-5.
    [78] M. Puchalska, E. Zych, Ce3+-sensitized red Mn2+ luminescence in calcium aluminoborate phosphor material, Optical Materials, 74 (2017) 2-11.
    [79] C.-Y. Chen, T.-K. Tseng, C.-Y. Tsay, C.-K. Lin, Formation of irregular nanocrystalline CeO2 particles from acetate-based precursor via spray pyrolysis, Journal of Materials Engineering and Performance, 17 (2008) 20-24.
    [80] S.-J. Shih, Y.-Y. Wu, C.-Y. Chen, C.-Y. Yu, Morphology and formation mechanism of ceria nanoparticles by spray pyrolysis, Journal of Nanoparticle Research, 14 (2012) 879.
    [81] S.-J. Shih, Y.-Y. Wu, Y.-J. Chou, K.B. Borisenko, Nanoscale control of composition in cerium and zirconium mixed oxide nanoparticles, Materials Chemistry and Physics, 135 (2012) 749-754.
    [82] P. Kusriantoko, Degradation behavior and bioactivity of various compositional mesoporous bioactive glasses, Material Science and Engineering, NTUST, Taiwan, 2015.
    [83] S.-J. Shih, Y.-Y. Wu, K.B. Borisenko, Control of morphology and dopant distribution in yttrium-doped ceria nanoparticles, Journal of Nanoparticle Research, 13 (2011) 7021-7028.
    [84] S. Shih, J. Huang, Designing the morphology of ceria particles by precursor complexes, Ceramics International, 39 (2013) 2275-2281.
    [85] G.L. Messing, S.C. Zhang, G.V. Jayanthi, Ceramic powder synthesis by spray pyrolysis, Journal of the American Ceramic Society, 76 (1993) 2707-2726.
    [86] K. Guo, M.-L. Huang, H.-H. Chen, X.-X. Yang, J.-T. Zhao, Comparative study on photoluminescence of amorphous and nano-crystalline YAG: Tb phosphors prepared by a combustion method, Journal of Non-Crystalline Solids, 358 (2012) 88-92.
    [87] A. Douy, M. Gervais, Crystallization of amorphous precursors in the calcia–alumina system: a differential scanning calorimetry study, Journal of the American Ceramic Society, 83 (2000) 70-76.
    [88] D. Fumo, M. Morelli, A. Segadaes, Combustion synthesis of calcium aluminates, Materials Research Bulletin, 31 (1996) 1243-1255.
    [89] P.G. Desai, Z. Xu, J.A. Lewis, Synthesis and properties of CaAl2O4‐coated AI2O3 microcomposite powders, Journal of the American Ceramic Society, 78 (1995) 2881-2888.
    [90] Y. Iso, S. Takeshita, T. Isobe, Effects of annealing on the photoluminescence properties of citrate-capped YVO4: Bi3+, Eu3+ nanophosphor, The Journal of Physical Chemistry C, 118 (2014) 11006-11013.
    [91] E. Bernardo, L. Fiocco, A. Prnová, R. Klement, D. Galusek, Gehlenite: Eu3+ phosphors from a silicone resin and nano-sized fillers, Optical Materials, 36 (2014) 1243-1249.
    [92] T. Anwar, W. Li, N. Hussain, W. Chen, R.U.R. Sagar, L. Tongxiang, Effect of annealing atmosphere induced crystallite size changes on the electrochemical properties of TiO2 nanotubes arrays, Journal of Electrical Engineering, 4 (2016) 43-51.
    [93] L. Lin, R. Shi, R. Zhou, Q. Peng, C. Liu, Y. Tao, Y. Huang, P. Dorenbos, H. Liang, The Effect of Sr2+ on luminescence of Ce3+-Doped (Ca, Sr)2Al2SiO7, Inorganic chemistry, 56 (2017) 12476-12484.
    [94] M. Borlaf, R. Kubrin, V. Aseev, A.Y. Petrov, N. Nikonorov, T. Graule, Deep submicrometer YAG: Ce phosphor particles with high photoluminescent quantum yield prepared by flame spray synthesis, Journal of the American Ceramic Society, 100 (2017) 3784-3793.

    QR CODE