簡易檢索 / 詳目顯示

研究生: 王祺元
Chi-Yuan Wang
論文名稱: 晶粒尺寸效應對純鐵板材之微拉伸成形影響之研究
A Study of Grain Size Effect on Pure Iron Sheet under Micro Stretching Forming Process
指導教授: 黃佑民
You-Min Huang
口試委員: 向四海
Su-Hai Hsiang
陳聰嘉
Tsung-Chia Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 125
中文關鍵詞: 微拉伸成形晶粒尺寸成形性
外文關鍵詞: micro stretching forming, grain size, formability
相關次數: 點閱:161下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬精微成形技術是一項正在發展中的重要精密工業技術,具有生產效率高、成本低和產品可具複雜之幾何外形等優點,但是在微觀尺度下,成形參數與材料性質會與傳統巨觀尺度有所不一樣,這種現象我們稱為尺寸效應(size effect)。
    本文遵循Prandtl-Reuss塑流法則與von Mises之降伏條件,結合有限變形理論及updated Lagrangian formulation (ULF)之觀念建立一增量型彈塑性大變形三維有限元素分析程式。並利用以四邊形四節點之退化殼元素(degenerated shell element)所推導之形狀函數耦合入剛性矩陣,組成三維有限元素之分析模式,並且使用廣義 法則處理金屬板材在成形時,包含元素之降伏判斷、最大容許應變增量、最大容許旋轉增量、料片與模具間節點之接觸與分離判斷等問題。
    本文將探討厚度分別為0.2mm、0.1mm、0.075mm、0.05mm的純鐵薄板材,經由不同溫度與時間的再結晶退火後,其微拉伸成形(micro stretching forming)之成形性變化,並與數值模擬分析結果做比較,探討其中的沖頭負荷與位移關係、破裂沖程、應力分佈與厚度分佈等,以獲得目前塑性理論可適用的最小尺度範圍,並探討在微觀尺度下之準確性與適用性。


    Metal microforming process is a developing technology in precision manufacturing. This technology has many advantages, such as high producing efficiency, low cost, and the ability to produce products with complicated geometrical shape. But when the dimensions reduce to the micro scale, the forming parameters and material properties change due to the reduction of dimensions. This is called the “size effect”.
    A methodology of formulating an elastic-plastic three-dimensional finite element model to simulate sheet metal forming process is developed using Prandtl-Reuss flow rule and von Mises yield criterion respectively in association with an updated Lagrangian formulation. The shape function derived from a four-node quadrilateral degenerated shell element was combined into the stiffness matrix to constitute the finite element model. An extended algorithm was proposed to formulate the boundary condition, such as nodal penetration and separation, strain increment and rotation increment, and altered elasto-plastic state of material.
    This study will discuss thickness respectively the pure iron sheet of 0.2mm, 0.1mm, 0.075mm, 0.05mm, after different temperature and time recrystallization annealing, its micro stretch forming the formability change, and compare with the analysis result of numerical simulation, the relationship between punch load and punch stoke, the breakage stroke, the distribution of stress, the distribution of thickness. In order to obtain the minimum suitable range of plasticity theory at present, and discuss the accuracy and suitability in micro scale.

    摘要 I ABSTRACT II 誌謝 III 符號索引 VIII 圖表索引 XIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 尺寸效應(size effect) 2 1.2.2 相似理論(similarity law) 3 1.2.3 表面塑性層效應(surface layer effect) 5 1.2.4 摩擦特性研究 7 1.2.5 晶粒尺寸效應在微成形之研究 10 1.2.6 試片尺寸效應在精微成形之研究 11 1.2.7 溫度在精微成形之研究 11 1.2.8 其他相關文獻 12 1.3 研究動機與目的 13 1.4 論文架構 14 第二章 基本理論 16 2.1 塑性變形有限元素法之文獻回顧 16 2.2 基本假設 18 2.3 有限變形之應變與應變率 18 2.4 有限變形之應力與應力率 19 2.5 有限變形之update Lagrangian formulation 21 2.6 材料之彈塑性構成關係式 25 第三章 金屬板材有限元素分析 29 3.1 簡介 29 3.2 虛功原理的離散化 31 3.3 退化殼元素(Degenerated Shell Element) 32 3.4 摩擦處理 35 3.5 廣義 法之增量步驟的計算 38 3.6 三維曲度修正方程式 42 3.7 除荷之設定 42 3.8 數值分析之流程 43 第四章 實驗方法 47 4.1 實驗流程 47 4.2 實驗材料之選取 48 4.3 熱處理退火 48 4.3.1 熱處理之設備 50 4.3.2 熱處理之步驟 51 4.4 金相實驗 52 4.5 晶粒尺寸之計算方法 53 4.6 拉伸實驗 55 4.6.1 拉伸實驗之設備 55 4.6.2 拉伸試片規格與製作 58 4.6.3 拉伸實驗步驟 59 4.7 微拉伸成形實驗 60 4.7.1 微沖壓機台 60 4.7.2 模具設計 60 4.7.3 微拉伸成形實驗之步驟 70 第五章 實驗結果 71 5.1 熱處理與金相實驗結果 71 5.2 拉伸實驗結果 74 5.3 微拉伸成形實驗結果 77 5.4 數值模擬分析 83 5.4.1 有限元素網格分割 83 5.4.2 邊界條件 83 5.4.3 材料參數 85 5.5 模擬與實驗結果比較 89 5.5.1 變形歷程 89 5.5.2 沖頭負荷與沖程關係 91 5.5.3 破裂沖程比較 99 5.5.4 應力分佈 103 5.5.5 厚度分佈 107 第六章 結論 110 5.1 結論 110 6.2 未來展望 112 參考文獻 113 作者簡介 118

    1. M. Geiger, M. Kleiner, R. Eckstein, N. Tiesler and U. Engel, “Microforming” , CIRP Annals–Manufacturing Technology, Vol.50,
    pp.445-462(2001).
    2. 邱先拿,“台灣在金屬精微成形系統技術之研究方向與策略”,
    金屬精微製作技術研討會技術資料集(2003).
    3. T.A. Kals, and R. Eckstein, “Miniaturization in Sheet Metal Working”, Journal of Materials Processing Technology, Vol.103, pp.95-101
    (2000).
    4. U. Engel, and R. Eckstein , “Microforming─From Basic Research to Its Realization” , Journal of Materials Processing Technology,
    Vol.125-126, pp.35-44(2002).
    5. R. Kals, F. Vollertsen, and M. Geiger, “Scaling Effects in Sheet Metal Forming” , Proceedings of the Fourth International Conference on
    Sheet Metal (SheMet), Vol.2, pp.65-75(1999).
    6. A. Buschhausen, K. Weinmann, J.Y. Lee, and T. Altan, “Evaluation of Lubrication and Friction in Cold Forging Using a Double Backward-Extrusion Processing” , ournal of Materials Processing Technology, Vol.33, pp.95-108(1992).
    7. N. Tiesler, “Microforming─Size Effect in Friction and Their Influence on Extrusion Processes” , Wire, Vol.52, n 1, pp.34-38(2002)
    8. A. Rosochowski, W. Presz, L. Olejnik, M. Richert, “Micro-Extrusion of Ultra-fine Grained Aluminium” , International Journal of Advanced Manufacturing Technology , Vol.33, n1-2, pp.137-146(2007)
    9. B. Eichenhüller, U. Engel, S. Geißdörfer, “Process Parameter Interaction in Microforming” ,International Journal of Material Forming, Vol.1, pp.451-454(2008)
    10. A. Diehl, U. Engel, M. Geiger, “Spring-Back Behaviour of Thin Metal Foils in Free Bending Processes” , Proceedings First International Conference on Multi-Material Micro Manufacture 4M, pp.147-150(2005)
    11. A. Diehl, U. Engel, M. Geiger, “Influence of Micorstructure on the Mechanical Properties and the Forming Behaviour of Very Thin Metal Foils” , 3rd International Conference on Multi-Material Micro Manufacture, pp.289-292(2007)
    12. A. Diehl, U. Engel, M. Geiger, “Mechanical Properties and Bending Behaviour of Metal Foils” , Journal of Engineering Manufacture, Vol.222, pp.83-91(2008)
    13. A. Kocańda, T. Prejs, “Experimental analysis of the effect of grain size on the mechanical behaviour of thin copper sheet in pure moment bending” , Proceedings of the Institution of Mechanical Engineers -- Part L -- Journal of Materials: Design & Applications, Vol.217, pp.249-254(2003)
    14. L. V. Raulea, L. E. Govaert, F. P. T. Baaijens, “Grain and Specimen Size Effect in Processing Metal Sheets” , Proceeding of the 6th International Conference on Technology of Plasticity, pp.939-944(1999)
    15. L. V. Raulea, A. M. Goijaerts, L. E. Govaert, F. P. T. Baaijens, “Size Effects in the Processing of Thin Metal Sheets” , Journal of Materials Processing Technology, Vol.115, pp.44-48(2003)
    16. H. Hoffmann, S. Hong, “Tensile Test of Very Thin Sheet Metal and Determination of Flow Stress Considering the Scaling Effect” , CIRP Annals - Manufacturing Technology, Vol.55, n 1, pp.263-266(2006)
    17. C. Barbier, S. Thibaud, P. Picart, “Size effects on material behaviour in microforming” , International Journal of Material Forming, Vol.1, pp.439-442(2008)
    18. B. Eichenhueller, E. Egerer, U. Engel, “Microforming at elevated temperature - Forming and material behaviour” , International Journal of Advanced Manufacturing Technology, Vol.33, n1-2, pp.119-124, (2007)
    19. T. Jimma, F. Sekine, “Precision Blanking of Electronic Machine Parts” , Advanced Technology of Plasticity, Berlinm Springer, pp.291-297(1987)
    20. T. Jimma, F. Sekine, “On High Speed Precision Blanking of IC Lead-Frames Using a Progressive Die” , Journal of Material Processing Technology, Vol.22, pp.291-305(1990)
    21. T. Jimma, F. Sekine, A. Saoto, “Effects of Dynamic Behaviour of Tools on Blanking of Electronic Machine Parts” , Advanced Technology of Plasticity, Vol.3, pp.1459-1464(1990)
    22. Y. Saotome, H. Iwazaki, “Superplastic Backward Microextrusion of Microparts for Micro-Electro-Mechanical Systems” , Journal of Material Processing Technology, Vol.119, pp.307-311(2001)
    23. Y. Saotome, K. Yasuda, H. Kaga, “Microdeep Drawability of Very Thin Sheet Steels”, Journal of Material Processing Technology, Vol.113, pp.641-647(2001)
    24. Y. Yamada, N. Yoshimura and T. Sakurai, “Plastic Stress Strain Matrix and Its Application for the Solution of Elastic-Plastic Problems by Finite Element Method,” Int. J. Sci, Vol. 10, pp. 343-354 (1968).
    25. C. Zienkiewicz, S. Valliappan and I. P. King, “Elasto-Plastic Solution of Engineering Problems, Initial-Stress, Finite Element Approach,” International Journal of Numerical Methods for Engineering, Vol. 1, pp.75-100 (1969).
    26. H. D. Hibbit, P. V. Marcal and J. R. Rice, “A Finite Element Formulation for Problem of Large Strain and Large Displacement,” Int. J. Solids Struct., Vol. 6, pp.1069-1086 (1970).
    27. C. H. Lee and Kobayashi, “New Solutions to Rigid-Plastic Deformation Problems Using a Matrix Method,” Trans. ASME, Journal of Engineering for industry, Vol.95, pp.865-873 (1973).
    28. J. C. Nagtegaal and N. Rebelo, “On the Development of A General Purpose Finite Element Program for Analysis of Forming Process,” Int. J. Num. Meth. Engng. , Vol. 25, pp.113-131 (1988).
    29. A. Makinouchi and S. D. Liu, “Finite Element Analysis of Contact Problems at Finite Elasto-Plastic Deformation,” Proceedings of NUMIFORM’89, pp26-30 (1989).
    30. A. Makinouchi and Y. Shirataki, S. D. Liu and Y. Nagai, “Generalization of Tool-Work Contact Conditions for Elasto-Plastic Analysis of Forming Process,” Advanced Technology of Plasticity, Vol. 3, pp.1161-1166 (1990).
    31. Y. M. Huang, H. Takizawa, A. Makinouchi and T. Nakagawa, “Elastic-Plastic Analysis of V-Bending Process,” Spring Proceeding of Plastic Working, Cho-Fu, Tokyo, pp.275-278 (1989).
    32. Y. Yamada and T. Hirakawa, “Large Deformation and Instability Analysis of Metal Forming Process,” Applications of Numerical Methods to Forming Processes,ASME,AMD-28,pp.27-38(1978).
    33. J. H. Cheng and N. Kikuchi, “An Analysis of Metal Forming Process Using Large Deformation Elastic-Plastic Formulations,” Computer Methods in Applied Mechanics and Engineering, Vol. 49, pp.71-108 (1985)
    34. M. J. Saran and R. H. Wagoner, “A Consistent Implicit Formulation for Nonlinear Finite Element Modeling with Contact Problems in Elasticity,” Journal of Applied Mechanics, Vol. 58, pp.499-506 (1991)

    無法下載圖示 全文公開日期 2012/07/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE