簡易檢索 / 詳目顯示

研究生: 鄭皓升
Hao-Sheng Cheng
論文名稱: 高活性非鉑系鎳釕觸媒於鹼性電解質下 電催化析氫與氫氧化反應之研究
Study of high performance non-platinum NiRu catalyst for electrocatalytic hydrogen evolution and oxidation reactions in alkaline electrolyte
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 蘇威年
Wei-Nien Su
林昇佃
Shawn D. Lin
王丞浩
Chen-Hao Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 122
中文關鍵詞: 氫氣氧化反應氫氣析出反應合金協同效應
外文關鍵詞: hydrogen oxidation reaction, hydrogen evolution reaction, nickel, ruthenium, alloy, synergistic effect
相關次數: 點閱:244下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用水熱法(Hydrothermal)合成不同比例之鎳釕雙金屬合金並承載於高表面積碳黑上,進行鹼性燃料電池陽極氫氣氧化反應之探討與鹼性下氫氣析出反應之應用。
利用TEM觀察觸媒顆粒大小分布在2~3 nm之間,並具有良好之分散性,且由X光吸收光譜之結果發現當觸媒中釕金屬之比例越低時,越容易造成金屬聚集,導致合金化程度的下降。本研究中,鎳釕比例為1:1及1:3時有較高之合金程度,表面組成也較為均勻。
在鹼性氫氣氧化反應之機制探討中利用電化學量測一氧化碳剝除實驗,推論鎳釕合金中釕的空軌域較少,其電子密度較飽滿對氫之吸附能降低,以及模擬計算得知鎳釕合金中表面鎳對OH基之吸附能大幅降低,推論協同效應之存在。
本研究成功以尿素調整合成環境以替代DMF合成鎳釕合金觸媒,並保有相當之活性。穩定性測試部分,本實驗使用循環伏安分析加速觸媒老化以比較氫氣氧化反應之穩定性,在經過3000圈老化測試後,活性下降13%。氫氣析出反應則使用定電流方式觀察過電位之變化來分析觸媒的穩定程度,在經過12小時穩定性測試後,過電位僅增加0.08 V。


In this study, the nickel (Ni)-ruthenium (Ru) bimetallic catalysts with different Ni/Ru ratios were successfully loaded on high-surface-area carbon black by using hydrothermal method. The bimetallic Pt-free catalyst shows a Pt-like activity and highly durable in alkaline hydrogen oxidation (HOR)/evolution (HER) reactions.

Through the materials characterization, the particle size distribution for Ni-Ru catalyst was observed as around 2 ~ 3 nm compared to Ru/C which shows around 2 nm. In the results of X-ray absorption spectroscopy the alloy extent of the NixRuy/C catalysts gets increased with increasing Ru content, while particle agglomeration is found by excess Ni content. Higher alloy extent can be found in the Ni/Ru ratio of 1 and 1/3 which leads to more uniform surface composition.

Reaction mechanism of the alkaline HOR has been widely discussed but still debated. Here we combined the experiments and the theoretical computation to propose a synergistic effect for alkaline HOR rather than only electronic effect. The results of CO stripping for Ru-based catalyst evidence the electron transfer from Ni to Ru because of negative shift of onset potential by addition of Ni, in which the electronic effect can be involved to weaken hydrogen binding energy. On the other hand, the computational results show the weakening adsorption of OH group on the Ni-Ru interfacial sites of the alloy surfaces, which may facilitate the Volmer step and enhance HOR performance.

For alkaline HOR/HER, Ni-Ru bimetallic catalyst exhibits an excellent activity as well as competitive performance to commercial Pt catalyst (Pt/C), which attributes to the synergistic effect. Moreover, the stability test for the bimetallic catalyst is much better than the Pt/C catalyst, indicating that the Ni-Ru catalyst has their potential to develop.

摘要 I 目錄 VI 第一章 緒論 1 1.1 前言 1 1.2 燃料電池之發展及趨勢 2 1.3 燃料電池種類 3 1.4 鹼性燃料電池 (AFC) 5 1.4.1 燃料電池操作原理 6 1.4.2 AFC陽極觸媒(AFC Anode Catalyst) 7 1.4.3 鹼性HOR反應機制(Hydrogen oxidation reaction;HOR) 8 1.5 研究動機與目的 10 第二章 文獻回顧 11 2.1 燃料電池觸媒開發與介紹 11 2.2 鉑系觸媒系統之研究現況 12 2.3 非鉑系觸媒系統之研究現況 16 2.4 非鉑系雙合金觸媒系統之研究現況 18 第三章 實驗設備與方法 20 3.1 實驗設備 20 3.2 實驗藥品 21 3.3 實驗步驟 23 3.3.1 碳載體之前處理 23 3.3.2 修飾Watanabe法置備NiRu/C觸媒 24 3.3.3 水熱法製備NiRu/C觸媒 25 3.3.4 修飾水熱法製備NiRu/C觸媒 27 3.3.5 一氧化碳剝除(CO-Stripping)實驗 29 3.3.6 X光吸收光譜之樣品製備 30 3.4 電化學漿料調配 30 3.5 材料鑑定與分析 32 3.5.1 X射線繞射儀(XRD) 32 3.5.2 穿透式電子顯微鏡 (TEM) 36 3.5.3 能量分散光譜儀(EDX) 37 3.5.4 感應偶合電漿光譜儀(ICP-AES) 38 3.5.5 X光吸收光譜原理 39 3.5.6 電化學原理 50 第四章 結果與討論 62 4.1 鎳釕合金觸媒之材料分析 62 4.1.1 鎳釕合金觸媒之物性分析 62 4.1.2 鎳釕合金觸媒之電化學活性分析 75 4.2 鎳釕合金觸媒於鹼性環境下HOR反應機制推論 92 4.2.1 鎳釕合金CO-Stripping與電子效應探討 92 4.2.2 理論計算OH吸附能與協同效應探討 95 4.3 修飾水熱法與水熱法合成觸媒之分析比對 97 4.3.1 修飾水熱法與水熱法合成觸媒之分析比較 97 4.4 鎳釕合金觸媒於鹼性環境下穩定性測試 104 4.4.1 HOR穩定性測試 104 4.4.2 HER穩定性測試 113 4.5 鎳釕合金觸媒與文獻活性比較 115 4.5.1 鹼性環境下HOR之質量活性(Mass activity)比較 115 4.5.2 鹼性環境下HER之質量活性(Mass activity)比較 116 第五章 結論 118 第六章 未來展望 120

1. L. Carrette, K.F., and U. Stimming, Fuel cells–fundamentals and applications. 2001. Fuel cells, vol. 1: p. 5-39.
2. 黃鎮江, 燃料電池. 全華科技圖書出版, 2005.
3. Carrette, L., K. Friedrich, and U. Stimming, Fuel cells–fundamentals and applications. Fuel cells, 2001. 1(1): p. 5-39.
4. Carrette, L., K.A. Friedrich, and U. Stimming, Fuel cells: Principles, types, fuels, and applications. ChemPhysChem, 2000. 1(4): p. 163-193.
5. Ohyama, J., Size Specifically High Activity of Ru Nanoparticles for Hydrogen Oxidation Reaction in Alkaline Electrolyte. Journal of the American Chemical Society, 2013. 135(21): p. 8016-8021.
6. 毛鈺翔, Study on Highly Active Pt-free NiRu Electrocatalyst for Alkaline Hydrogen Oxidation and Evolution Reactions. 台灣科技大學化學工程學系學位論文, 2017.
7. Durst, J., (Invited) hydrogen oxidation and evolution reaction (HOR/HER) on Pt electrodes in acid vs. alkaline electrolytes: Mechanism, activity and particle size effects. ECS Transactions, 2014. 64(3): p. 1069-1080.
8. Sheng, W., Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nature communications, 2015. 6.
9. Strmcnik, D., Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nature Chemistry, 2013. 5(4): p. 300-306.
10. Wang, Y., Pt–Ru catalyzed hydrogen oxidation in alkaline media: Oxophilic effect or electronic effect? Energy & Environmental Science, 2015. 8(1): p. 177-181.
11. Liao, J., Carbon supported IrM (M= Fe, Ni, Co) alloy nanoparticles for the catalysis of hydrogen oxidation in acidic and alkaline medium. Chinese Journal of Catalysis, 2016. 37(7): p. 1142-1148.
12. St. John, S., Ruthenium-Alloy Electrocatalysts with Tunable Hydrogen Oxidation Kinetics in Alkaline Electrolyte. The Journal of Physical Chemistry C, 2015. 119(24): p. 13481-13487.
13. SatoshiMotoo, M.M.u., Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol. ELSEVIER, 1987. 229(1-2): p. 395-406.
14. Feng-Ju Lai, B.-J.H., Structural Characterization of Bimetallic Nanoparticles and Their Applications in Direct Methanol Fuel Cells. 2009.
15. Gong, M. An Advanced Ni–Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation. Journal of the American Chemical Society, 2013. 135(23): p. 8452-8455.
16. Clare L. Green, A.K., Determination of the Platinum and Ruthenium Surface Areas in Platinum-Ruthenium Alloy Electrocatalysts by Underpotential Deposition of Copper. I. Unsupported Catalysts. ACS Catalysis, 2002. 106: p. 1036-1047.
17. Ngo, T.T., T.L. Yu, and H.L. Lin, Influence of the composition of isopropyl alcohol/water mixture solvents in catalyst ink solutions on proton exchange membrane fuel cell performance. Journal of Power Sources, 2013. 225: p. 293-303.
18. Tran, T.D. and S.H. Langer, Electrochemical measurement of platinum surface areas on particulate conductive supports. Analytical Chemistry, 1993. 65(13): p. 1805-1807.
19. H. Inoue, J.W., K. Sasaki, and R. Adzic, Electrocatalysis of H 2 oxidation on Ru (0001) and Ru (10-10) single crystal surfaces. Journal of Electroanalytical Chemistry, 2003. 554: p. 77-85.
20. Grimmer, C., Carbon Supported Ruthenium as Anode Catalyst for Alkaline Direct Borohydride Fuel Cells. The Journal of Physical Chemistry C, 2015. 119(42): p. 23839-23844.
21. Wang, Y., Pt–Ru catalyzed hydrogen oxidation in alkaline media: oxophilic effect or electronic effect? Energy Environ. Sci., 2015. 8(1): p. 177-181.
22. Zheng, J., Correlating Hydrogen Oxidation/Evolution Reaction Activity with the Minority Weak Hydrogen-Binding Sites on Ir/C Catalysts. ACS Catalysis, 2015. 5(7): p. 4449-4455.
23. Tzorbatzoglou, F., A. Brouzgou, and P. Tsiakaras, Electrocatalytic activity of Vulcan-XC-72 supported Pd, Rh and PdxRhy toward HOR and ORR. Applied Catalysis B: Environmental, 2015. 174: p. 203-211.
24. Scofield, M.E., Role of Chemical Composition in the Enhanced Catalytic Activity of Pt-Based Alloyed Ultrathin Nanowires for the Hydrogen Oxidation Reaction under Alkaline Conditions. ACS Catalysis, 2016. 6: p. 3895-3908.
25. Xie, J., Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. Journal of the American Chemical Society, 2013. 135(47): p. 17881-17888.
26. Sheng, W., Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy & Environmental Science, 2013. 6(5): p. 1509-1512.

QR CODE