簡易檢索 / 詳目顯示

研究生: 王金圳
Jin-jun Wang
論文名稱: 以敲擊回音法檢測細長與標準圓柱及混凝土板之材料性質
Evaluation on material properties of slender and standard cylinders and concrete plate using impact-echo method
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 林宜清
none
鄭家齊
none
江支弘
none
楊仲家
none
王鶴翔
none
陳君弢
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 197
中文關鍵詞: 敲擊回音法材料性質圓柱平板數值模擬
外文關鍵詞: impact-echo method, material property, cylinder, plate, numerical simulation
相關次數: 點閱:230下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

敲擊回音法為目前廣泛應用於土木工程領域,用以檢測混凝土結構內部損傷位置、裂縫範圍、評估完整性等之非破壞檢測設備。然而對於材料性質的檢測,常見是在試驗室中完成,根據ASTM 試驗規範,試體體積必須十分細長且試驗結果不易獲得。

本研究以共振理論、試驗及數值模擬三者為核心,針對實心圓柱與平板進行分析。首先,對於橫截面採不同材料性質以guided-wave 法進行解析,發現第二至六共振頻率與基礎頻率的比例僅與卜松比有關,藉由線性回歸得到一適合檢測各式材料橫截面完整性之公式。次者,由細長桿件一維縱向波傳理論所得之基礎共振頻率,結合與橫截面基礎共振頻率二者關係,提出一對桿件縱向及橫向各進行一次敲擊,即可檢測材料卜松比與彈性模數之計算公式。此外,對於標準圓柱方面,分析Love 彈性波理論後發現,縱向基礎頻率與第二頻率的比例亦僅與卜松比有關,據此發展出一套只需對桿件縱向一次敲擊即能檢測標準圓柱材料性質的公式。最後,解析Lamb wave 方程式過程中同樣地發現第一與第二頻率的比例僅與卜松比相關,進而推導出對混凝土平板表面一次敲擊即可測定板材料性質之公式。

藉由試驗結果以及2D、3D 模態與暫態分析之數值模擬的印證,證明敲擊回音法設備可應用於不僅可以檢測混凝土,其他包括石膏、金屬、合金金屬、塑膠等圓柱相關材料均可測定其橫截面完整性以與材料性質。對於混凝土平板的材料性質亦可藉由簡單的敲擊即可獲得。相較於ASTM 規範的操作程序,本研究的檢測過程是相對精簡與可靠,可於方便工地現場及時進行材料性質的測定。


The impact-echo method is a nondestructive technique and has been widely used in civil engineering to determine the location of the internal defect, extent of flaws, and the integrity of concrete structures, etc. However, the procedures of evaluation of material properties are always finished in laboratory. According to the manual of American Society for Testing and Materials (ASTM), the dimension of specimen must be very slender and test results are hard to attain.

Base on resonant theories, experiments, and numerical simulation, this research focuses on solid cylinder rod and concrete plate. First, the guided-wave method is used to analyze cross-sectional resonant frequency with different material properties, and frequency coefficients for the 2nd to 6th frequencies only relate with Poisson’s ratio. The curve-fitting technique is used to obtain the best fit equations to determine the integrity of a cross-section. The second, according to the longitudinal fundamental frequency from one-dimensional wave equation and cross-sectional fundamental frequency from guided-wave method of slender rod, a new equation for evaluation Poisson’s ratio and modulus of elasticity is led out. The experimental procedures only need one impact respectively on the center of one end and the middle surface of rod. Furthermore, the elastic wave theory for standard cylinder given by Love is solved and the ratio of the 2nd to 1st longitudinal frequency also only concerns with Poisson’s ratio. The equations are developed to determine material properties and the test process is to impact once with one end of cylinder. Finally, The Lamb wave equations are analyzed and similarly the ratio of the 2nd to 1st longitudinal frequency only corresponds with Poisson’s ratio. New equations for evaluation of material properties of concrete plate are led out and the new test procedure proposed in the paper just needs only one impact to surface of plate.

Via verification of test results and 2D/3D of modal and transient analyses of numerical simulation, the impact-echo equipment is suitable for determination of material properties and evaluation of cross-sectional integrity. The applied scope of materials is including concrete, gypsum, metal, alloy metal, plastic, etc. The material properties of concrete plate will also be obtained by a simple impact. Comparison with the manual of ASTM, the experimental procedures of this search are relative simple, reliable, convenient and immediate to determinate the material properties at field.

中文摘要 --------------------------------------------------------------------------- I 英文摘要 ------------------------------------------------------------------------- III 誌謝 -------------------------------------------------------------------------------- V 目錄 ------------------------------------------------------------------------------- VI 符號對照表 ----------------------------------------------------------------------- X 表目錄 -------------------------------------------------------------------------- XIII 圖目錄 -------------------------------------------------------------------------- XIV 第一章 緒論 -------------------------------------------------------------------- 1 1-1 研究背景 -------------------------------------------------------------------- 1 1-2 研究動機與目的 ----------------------------------------------------------- 2 1-3 範圍與方法 ----------------------------------------------------------------- 3 1-4 論文內容 -------------------------------------------------------------------- 3 第二章 文獻回顧 -------------------------------------------------------------- 7 2-1 應力波傳行為 -------------------------------------------------------------- 7 2-1-1 圓柱縱向波傳 -------------------------------------------------------- 7 2-1-2 半無限域應力波傳 -------------------------------------------------- 9 2-2 敲擊回音法 ---------------------------------------------------------------- 11 2-2-1 發展沿革------------------------------------------------------------- 11 2-2-2 檢測原理-時間域法 ------------------------------------------------ 13 2-2-3 檢測原理-頻率域法 ------------------------------------------------ 14 2-2-4 試驗參數:敲擊源、取樣間隔、取樣筆數與頻譜解析度 -- 15 2-3 敲擊回音法之應用 -------------------------------------------------------- 19 2-3-1 圓形截面之檢測 ---------------------------------------------------- 19 2-3-2 圓柱縱向之檢測 ---------------------------------------------------- 20 2-3-3 平板結構之檢測 ---------------------------------------------------- 22 2-4 ASTM 對動態彈性模數及卜松比之檢測方法 ------------------------ 24 第三章 試驗規畫 ------------------------------------------------------------- 38 3-1 試驗材料 ------------------------------------------------------------------- 38 3-2 試驗儀器與設備 ---------------------------------------------------------- 40 3-3 分析軟體 ------------------------------------------------------------------- 42 3-4 試驗項目與步驟 ---------------------------------------------------------- 43 第四章 數值分析方法 ------------------------------------------------------- 61 4-1 概述 ------------------------------------------------------------------------- 61 4-1-1 2D PLANE162 元素 ------------------------------------------------ 62 4-1-2 3D SOLID164 元素 ------------------------------------------------ 62 4-2 數值模型 ------------------------------------------------------------------- 63 4-2-1 2D 模型之平面應變與軸對稱 ------------------------------------ 63 4-2-2 網格劃分------------------------------------------------------------- 64 4-2-3 邊界條件與漂移問題 ---------------------------------------------- 67 4-3 圓形截面共振頻率 -------------------------------------------------------- 68 4-3-1 暫態分析------------------------------------------------------------- 68 4-3-2 模態分析------------------------------------------------------------- 70 4-4 細長柱與標準圓柱軸向共振頻率 -------------------------------------- 70 4-4-1 暫態分析------------------------------------------------------------- 71 4-4-2 模態分析------------------------------------------------------------- 72 4-5 平板共振頻率 ------------------------------------------------------------- 72 4-5-1 時間域法------------------------------------------------------------- 73 4-5-2 暫態分析------------------------------------------------------------- 73 4-5-3 模態分析------------------------------------------------------------- 74 第五章 圓形截面特徵頻率與動態卜松比 ------------------------------- 94 5-1 圓形截面之導波法 ------------------------------------------------------ 94 5-2 卜松比對形狀因子與頻率比例因子的影響 ------------------------- 95 5-3 形狀因子與頻率比例因子公式之建立 ------------------------------- 96 5-4 試驗與數值模擬印證 --------------------------------------------------- 98 第六章 圓柱與平板之動態卜松比與彈性模數公式推導與應用 ---- 116 6-1 長柱分析 ------------------------------------------------------------------ 116 6-1-1 動態卜松比 --------------------------------------------------------- 116 6-1-2 動態彈性模數 ------------------------------------------------------ 119 6-1-3 試體檢測與數值模擬 -------------------------------------------- 121 6-2 標準圓柱分析 ----------------------------------------------------------- 124 6-2-1 動態卜松比 -------------------------------------------------------- 124 6-2-2 動態彈性模數 ----------------------------------------------------- 126 6-2-3 試體檢測與數值模擬 -------------------------------------------- 127 6-3 平板動態卜松比與彈性模數推導 ------------------------------------ 130 6-3-1 平板藍姆波之解析方法 ----------------------------------------- 131 6-3-2 卜松比、形狀因子與彈性模數 -------------------------------- 133 6-3-3 試體檢測與數值模擬 -------------------------------------------- 137 第七章 結論與建議 -------------------------------------------------------- 177 7-1 結論 ----------------------------------------------------------------------- 177 7-1-1 圓形截面共振頻率與動態卜松比 ----------------------------- 177 7-1-2 細長圓柱動態卜松比與彈性模數 ----------------------------- 178 7-1-3 標準圓柱動態卜松比與彈性模數 ------------------------------ 180 7-1-4 平板動態卜松比與彈性模數 ----------------------------------- 181 7-2 建議 ----------------------------------------------------------------------- 182 參考文獻 ----------------------------------------------------------------------- 184 作者簡介 ----------------------------------------------------------------------- 194

1.Das, B. M., Fundamentals of Soil Dynamics, Elsevier, New York, pp.55-86(1993)
2.Richart, F.E., Jr., Hall, J.R., and Woods, R.D., Vibration of Soils and Foundations, Prentice Hall, Inc., Englewood Cliffs, New Jersey, pp.60-92(1970)
3.Love, A. E. H., A Treatise on The Mathematical Theory of Elasticity, Dove Publications Inc., New York, pp.289-291(1944)
4.Kolsky. H., Stress Waves in Solids, Dove Publications Inc., New York, pp.56-59(1963)
5.Fowler, C. M. R., The Solid Earth: An Introduction to Global Geophysics, Cambridge University Press, New York, pp.101-105(2008)
6.Bergmann, L., Der Ultraschall und seine Anwendung in Wissenschaft und Technik, S. Hirzel Verlag, Hirzel, Stuttgart, p405(1954).
7.林宜清,「敲擊回音法在混凝土板厚度量測之應用(ASTM C1383)」,土木技術,第二卷,第十期,第49-57頁(1999)。
8.Sansalone, M. and Carino, N. J., "Transient impact response of plates containing flaws," Journal of Research of the National Bureau of Standards, Vol.92, No.6, pp.369-381(1987)
9.Sansalone, M, Carino, N. J. and Hsu, N. N., "Finite element study of transient wave propagation in plates," Journal of Research of the National Bureau of Standards, Vol.92, No.4, pp.267-278(1987)
10.Lin, Y., Sansalone, M. and Carino, N. J., "Finite element studies of the impact-echo response of plates containing thin layers and voids," Journal of Nondestructive Evaluation, Vol.9, No.1, pp.27-47(1990)
11.Cheng, C. C. and Sansalone, M., "The impact-echo response of concrete plates containing delaminations: numerical, experimental, and field studies," Materials and Structures, Vol. 26, No. 159, pp.274-285(1993)
12.Cheng, C. C. and Sansalone, M., "Determining the minimum crack width that can be detected using the impact-echo method part 1: experimental study," Materials and Structures, Vol.28, No.176, pp.74-82(1995)
13.Cheng, C. C. and Sansalone, M., "Determining the minimum crack width that can be detected using the impact-echo method part 2: Numerical fracture analyses," Materials and Structures, Vol.28, No.177, pp.125-132(1995)
14.Pessiki, S. P. and Johnson, M. R., "Nondestructive evaluation of early-age concrete strength in plate structures by the impact-echo method," ACI Materials Journal, Vol. 93, No. 3,pp.260-271(1996)
15.Lin, Y., Yen, J. Y. R. and Chen, C. F., "Tracing initiation and propagation of cracks in composite slabs," Journal of Structural Engineering, ASCE, Vol.122, No.7, pp.756-761(1996)
16.Xiang, Y. and Peng, Y., "Measurement of wave speed and thickness of concrete plate by impact-echo method," Journal of Wuhan University of Technology, Vol.27, No.2, p166 (2003)
17.Mori, K., Torigoe, I., Tokunaga, M., Hatanaka, S. and Shiramizu, Y., "A method of detecting voids under concrete plates by impact-echo test," Materials Science Forum, Vol. 465-466, pp.349-354(2004)
18.Kesner, K., Sansalone, M. J. and Poston, R. W., "Use of the impact-echo method to evaluate damage due to distributed cracking in concrete plate members: Theory and field trials," Transportation Research Record, No.1893, pp61-69(2004)
19.Hu, M. T., Lin, Y. and Cheng, C. C., "Method for determining internal P-wave speed and thickness of concrete plates," ACI Materials Journal, Vol.103, No.5, pp.327-335(2006)
20.Nishimura, N., Murase, K., Ito, T. and Kondo, M., "Nondestructive evaluation of change in spall damage under repeated plate impact tests by flyer plate of different thickness," The Japan Society of Mechanical Engineers, Part A, Vol.75, No.757, pp.1222-1229(2009)
21.Tawhed, W. F. and Gassman, S. L., "Damage assessment of concrete bridge decks using impact-echo method," ACI Materials Journal, Vol.99, No.3, pp.273-281(2002)
22.Scott, M., Rezaizadeh, A., Delahaza, A., Santos, C. G., Moore, M., Graybeal, B. and Washer, G., "A comparison of nondestructive evaluation methods for bridge deck assessment," NDT and E International, Vol.36, No.4, pp.245-255(2003)
23.Gassman, S. L. and Tawhed, W. F., "Nondestructive assessment of damage in concrete bridge decks," Journal of Performance of Constructed Facilities, ASCE, Vol.18, no.4, pp.220-231(2004)
24.Sansalone, M., and Carino, N. J., "Impact-echo: a method for flaw detection in concrete using transient stress waves," NBSIR 86-3452, National Bureau of Standards, Gaithersburg, Maryland, p.222(1986)
25.Sansalone, M., and Carino, N. J., "Laboratory and field study of the impact-echo method for flaw detection in concrete," in Nondestructive Testing of Concrete, Special Publication of the American Concrete Institute, pp.1-20(1988)
26.Sansalone, M., and Carino, N. J., "Detecting honeycombing, the depth of surface-opening cracks, and ungrouted ducts using the impact-echo method," Concrete International, pp.38-46(1988)
27.Lin, Y. , Sansalone, M. and Carino, N. J., "Impact-echo response of concrete shaft," ASTM Geotechnical Testing Journal, Vol.14, No.2, pp.121-137(1991)
28.Lin, Y. and Sansalone, M., "Transient response of thick circular and square bars subjected to transverse elastic impact," Journal of the Acoustical Society of America, Vol.91, No.2, pp.885-893(1992)
29.Lin, Y. and Sansalone, M., "Detecting flaws in concrete beams and columns using the impact-echo method," ACI Materials Journal, pp.394-405(1992)
30.Lin, Y. and Sansalone, M., "Transient response of thick rectangular bars subjected to transverse elastic impact," Journal of the Acoustical Society of America, Vol.91, No.5, pp.2674-2685(1992)
31.Sansalone, M., Lin, J. M. and Streett, W. B., "Determining the depth of surface-opening cracks using impact-generated stress waves and time-of-flight techniques," ACI Materials Journal, Vol.95, No.2, pp. 168-177(1998)
32.Cam, E. Orhan, S. and Luy, M., "An analysis of cracked beam structure using impact echo method," NDT and E International, Vol.38, No.5, pp.368-373(2005)
33.Kruger, M., Grosse, C. U. and Reinhardt, H. W., "Crack depth determination at large concrete structures using scanning impact-echo-techniques," Proceedings of the 3rd International Conference on Bridge Maintenance, Safety and Management - Bridge Maintenance, Safety, Management, Life-Cycle Performance and Cost, pp.937-939(2006).
34.Tokai, M. and Ohtsu, M., "Evaluation of the surface crack depth in concrete by impact-echo procedures (SIBIE)," Proceedings of the 6th International Conference on Fracture Mechanics of Concrete and Concrete Structures," Vol.2, pp.1005-1010(2007)
35.Kimitoshi, M., Masahiko, Y., and Masayasu. O., "On-site measurement of delamination and surface crack in concrete structure by visualized NDT," Construction and Building Materials, Vol.24, No.12, pp.2381-2387(2010).
36.Carino, N. J. and Sansalone, M., "Detection of voids in grouted ducts using the impact-echo method," Proceedings of the International Workshop on Testing During Concrete Construction, p369(1991)
37.Carino, N. J. and Sansalone, M., "Detection of voids in grouted ducts using the impact-echo method," ACI Materials Journal, Vol.89, No.3, pp.296-303(1992)
38.Jaeger, B. J., Sansalone, M. and Poston, R. W., "Detecting voids in grouted tendon ducts of post-tensioned concrete structures using the impact-echo method," ACI Structural Journal, Vol.93, No.4, pp.462-473(1996).
39.Abraham, O. and Cote, P., "Impact-echo thickness frequency profiles for detection of voids in tendon ducts ," ACI Structural Journal, Vol.99, No.3, pp.239-247(2002)
40.Tinkey, Y. and Olson, L. D., "Applications and limitations of impact echo scanning for void detection in posttensioned bridge ducts," Transportation Research Record, No.2070, pp.8-12(2008)
41.Cheng, C. C. and Sansalone, M., "Effects on impact-echo signals caused by steel reinforcing bars and voids around bars," ACI Materials Journal, Vol.90, No.5, pp.421-434(1993)
42.Sansalone, M. and Carino, N. J., "Detecting delaminations in concrete slabs with and without overlays using the impact-echo method," ACI Materials Journal, Vol.86, No.2, pp.175-184(1989)
43.Sansalone, M. and Carino, N. J., "Detecting delaminations in reinforced concrete slabs with and without asphalt concrete overlays using the impact-echo method," Materials Journal of the American Concrete Institute, Vol. 86, No.2, pp.175-184(1992)
44.Cheng, C. C. and Sansalone, M., "The impact-echo response of concrete plates containing delaminations: numerical, experimental, and field studies," Materials and Structures, Vol.26, No. 159, pp.274-285(1993)
45.Davis, A. G., Hertlein, B. H., Lim, M. K. and Michols, K., "Impact-echo and impulse response stress wave methods: Advantages and limitations for the evaluation of highway pavement concrete overlays," Proceedings of SPIE - The International Society for Optical Engineering, Vol. 2946, pp.88-96(1996)
46.Sansalone, M., "Impact-echo: The complete story," ACI Structural Journal, Vol.94, No.6, pp.777-786(1997)
47.林宜清、許有智,「以敲擊回音法檢測鋼腱套管之灌漿品質」,中國土木水利工程學刊,第九卷,第三期,第517-523頁(1997)。
48.Lin, J. and Sansalone, M., "Impact-echo response of hollow cylindrical concrete structures surrounded by soil or rock, part I- numerical studies," ASTM Geotechnical Testing Journal, Vol.17, No.2, pp.207-219(1994)
49.Lin, J. and Sansalone, M., "Impact-echo response of hollow cylindrical concrete structures surrounded by rock, part II- experimental studies," ASTM Geotechnical Testing Journal, Vol.17, No 2, pp.220-226(1994)
50.Brameshuber, W. and Willmes, M., "Quality control of concrete tunnel shells using impact echo methods," Insight: Non-Destructive Testing and Condition Monitoring, Vol.39, No.7, pp.479-481(1997)
51.林宜清、陳真芳,「敲擊回音法在隧道混凝土襯砌結構非破壞試驗之應用」,中國土木水利工程學刊,第八卷,第二期,第173-183頁(1996)。
52.Aggelis, D. G., Shiotani, T. and Kasai, K., "Evaluation of grouting in tunnel lining using impact-echo," Tunnelling and Underground Space Technology, Vol.23, No.6, pp.629-637(2008)
53.Song, K. I. and Cho, G. C., "Numerical study on the evaluation of tunnel shotcrete using the impact-echo method coupled with Fourier transform and short-time Fourier transform," International Journal of Rock Mechanics and Mining Sciences, Vol.47, No.8, pp.1274-1288(2010)
54.林宜清、江支弘、鄭家齊、胡盟宗,「混凝土脈波波速量測、表面裂縫深度與構件尺寸量測-教材講義」,中國土木水利工程學會,第36-66頁(2006)。
55.Sansalone, M., Lin, J. M. and Streett, W. B., "Determining the depth of surface-opening cracks using impact-generated stress waves and time-of-flight techniques," ACI Materials Journal, Vo1.95, No.2, pp.168-177(1998)
56.Lin, Y., Liou, T., and Tsai, W. H., "Determining the crack depth and the measurement errors using time-of-flight diffraction techniques," ACI Materials Journal, Vol.96, No.2, pp.190-195(1999)
57.Lin, Y., Chang, C. F., Kuo, S. F. and Liou, H. C., "A simple device for detecting impact time in impact-echo testing of concrete," NDT and E International, Vol.37, No.1, pp.1-8(2004)
58.Cheng, C. C. and Chiou, H. C., "Evaluating the bond-loss of reinforcing bar in new concrete construction subjected to earthquake using the impact-echo method," Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers, Vol.25, No.4, pp.425-436(2002)
59.Cheng, C. C., Lin, Y., Hsiao, C. M. and Chang, H. C., "Evaluation of simulated transfer functions of concrete plate derived by impact-echo method," NDT and E International, Vol.40, No.3, pp.239-249(2007).
60.Cheng, C. C., Yu, C. P. and Liou, T., "Evaluation of interfacial bond condition between concrete plate-like structure and substrate using the simulated transfer function derived by IE," NDT and E International, Vol.42, No.8, pp.678-689(2009)
61.ASTM Standard C1383, "Standard Test Method for Measuring the P-Wave Speed and the Thickness of Concrete Plates Using the Impact-Echo Method," ASTM International, West Conshohocken, PA, 2004.
62.Sansalone, M. and William, B. S., Impact-Echo: Nondestructive Evaluation of Concrete and Masonry, Bullbrier Press, New York, 1997.
63.Hu, M. T.g, Lin, Y., and Cheng, C. C., "Method for determining internal p-wave speed and thickness of concrete plates," ACI Materials Journal, Vol.103, No.5, pp. 327-335(2006)
64.林宜清、陳真芳、蔡聖德,「混凝土構件幾何形狀對波速之影響」,興大工程學報,第五期,第27-39頁(1994)。
65.Hunter, S. C., "Energy absorbed by elastic waves during impact," Journal of the Mechanics and Physics of Solids, Vol.5, No.3 ,pp.162–171(1957)
66.Reed, J., "Energy losses due to elastic wave propagation during an elastic impact," Journal of Physics D: Applied Physics, Vol.18, No.12, pp.2329–2337(1985)
67.McLaskey, G. C. and Glaser, S. D., "Hertzian impact: experimental study of the force pulse and resulting stress waves,", The Journal of the Acoustical Society of America, Vol.128, No.3, pp.1087-1096(2010)
68.楊君範,「混凝土結構敲擊反應波傳研究」,第十六頁,碩士論文,朝陽科技大學營建工程系(2003)。
69.Pratt, D. and Sansalone, M., "The use of a neural network for automating impact-echo signal analysis," ACI Materials Journal, Vol.89, No.2, pp.178-187(1992)
70.Mindess, S., Young, J. F. and Darwin, D., Concrete, Prentice Hall, Englewood Cliffs, N.J., p.312(2002)
71.Popovics, J. S., "Effects of poisson’s ratio on impact-echo test analysis," journal of engineering mechanics, ASCE, Vol.123, No.8, pp.843-851(1997)
72.Han, S. H. and Kim, J. K., "Effect of temperature and age on the relationship between dynamic and static elastic modulus of concrete," Cement and Concrete Research, Vol.34, No.7, pp.1219-1227(2004)
73.Kolluru, S. V., Popovics, J. S., and Shah, S. P., "Determining elastic properties of concrete using vibrational resonance frequencies of standard test cylinders," Cement, Concrete, and Aggregates, Vol.22, No.2, pp.81-89(2000)
74.Lamb, H., "On the flexure of an elastic plate," Proceedings of the London Mathematical Society, Vol.21, pp.70-91 (1889)
75.Krautkramer, J. and Krautkramer, H., Ultrasonic Testing of Materials, 2th Ed., Springer-Verlag, New York, p.11(1990)
76.Gibson, A. and Popovics, J. S., "Lamb Wave Basis for Impact-Echo Method Analysis," Journal of Engineering Mechanics, ASCE, Vol.131, No.4, pp.438-443(2005)
77.Popovics, J. S., Gibson, A. and Gonzalo G., "Development of Nondestructive Methods for Measurement of Slab Thickness and Modulus of Rupture in Concrete Pavements,"
http://www.virginiadot.org/vtrc/main/online_reports/pdf/06-cr9.pdf
78.ASTM Standard C215, "Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional Frequencies of Concrete Specimens," ASTM International, West Conshohocken, PA, 2008.
79.ASTM Standard E1876, "Standard Test Method for Dynamic Young's Modulus, Shear Modulus, and Poisson's Ratio by Impulse Excitation of Vibration," ASTM International, West Conshohocken, PA, 2009.
80.王新榮,陳時錦,劉亞忠,「有限元素法及應用」,中央圖書出版社,第一頁(1997)。
81.Hallquist, J., "A Procedure for the Solution of Finite-Deformation Contact-Impact Problems by the Finite Element Method", UCRL-52066, Lawrence Livermore National Laboratory, p.46(1976)
82.ANSYS, ANSYS LS-DYNA User's Guide, 2009.
83.Schubert, F. and Kohler, B., "Ten Lectures on Impact-Echo," Journal of Nondestructive Evaluation, Vol.27, pp.5-21(2008)
84.Hsiao, C., Cheng, C, C., Liouc, T. and Juang, Y., "Detecting flaws in concrete blocks using the impact-echo method," NDT & E International, Vol.41, No.2, pp.98-107(2008)
85.Hallquist, J. O., LS-DYNA theory manual, Livermore Software Technology Corp, CA, USA, (2006).
86.Wang, J, J., Chang, T. P., Chen, B. T., Lin, H. C. and Wang H., "Evaluation of resonant frequencies of solid circular rods with impact-echo method," Journal of Nondestructive Evaluation, Vol.29, No.2, pp.111-121(2010).
87.Medina, R., and Bayon, A., "Elastic constants of a plate from impact-echo resonance and Rayleigh wave velocity," Journal of Sound and Vibration, Vol.329, No.11, pp.2114-2126(2010).

QR CODE