簡易檢索 / 詳目顯示

研究生: 吳家宏
Chia-Hung Wu
論文名稱: 應用動態分散式運算與代理模型於加速大地工程反算分析
Applications of Dynamic Distributed Computing and Surrogate Model to Accelerate Back-Analysis in Geotechnical Engineering
指導教授: 謝佑明
Yo-Ming Hsieh
口試委員: 陳鴻銘
Hung-Ming Chen
王國隆
Kuo-Lung Wang
陳昭維
Chao Wei Chen
謝佑明
Yo-Ming Hsieh
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 135
中文關鍵詞: 反算分析克利金法代理模型分散式計算
外文關鍵詞: Back Analysis, Kriging, Surrogate Model, Distributed Computing
相關次數: 點閱:290下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在大地工程反算分析中,對不同材料參數進行數值模擬佔據大部分時間。為
了提高反算分析效率,本研究開發一個大地工程反算分析系統。透過動態分散式
計算架構,運用現有資源進行分散式計算。閒置的計算資源可隨時加入或離開反
算分析中,讓不同材料參數可以同時在各個計算資源中,進行數值模擬工作。並
藉由克利金代理模型取代原有數值模擬,降低整體反算分析中所需的數值模擬工
作量。
在系統開發完成後,本研究在四種最佳化測試函數、三種不同大地工程模擬
案例中,分別探討:第一、本研究實作的基因演算法、蟻群演算法、粒子群演算
法、自適應共變異數矩陣演化策略演算法四種不同最佳化演算法各自的表現;第
二、本研究實作的克利金法代理模型是否在足夠取樣下,可取代真實模型進行計
算;第三、預期改善值與估計相對誤差兩種不同的克利金變異數評估方法,在反
算過程中,對代理模型使用率與最佳化結果的影響;第四、代理模型與動態分散
式計算對整體反算效能的助益。
最後展示本研究開發之系統應用於真實大地工程案例之表現。在兩個真實案
例上,使用預期改善值輔助基於克利金法代理模型最佳化演算法,比不使用代理
模型的最佳化演算法能降低約 40%左右的反算時間。另外,在這兩個真實案例上
本研究開發之動態分散式系統,以 12 個工作節點輔助計算,降低 90%左右的反
算時間。


In the back-analysis in geotechnical engineering, numerical simulation of different material parameters takes up most of time. In order to improve the efficiency of backanalysis in geotechnical engineering, this study develops a back-analysis system for geotechnical engineering, which takes advantage of dynamic distributed computing architecture to use existing resources for distributed numerical simulation. Unoccupied computers can take or quit the numerical simulation task in the back-analysis process at any time; therefore, numerical simulation tasks of different material parameters can be calculated in each computer synchronously. Also, this study replace numerical simulation with surrogate model to reduce the workload of numerical simulation in back-analysis.
After the system has been developed, this study discusses the following things
based on four benchmark functions and three geotechnical simulation cases. First, the performance of genetic algorithm, ant colony optimization, particle swarm optimization and covariance matrix adaptation evolution strategy. Second, whether the Krigingbased surrogate model can replaced real model if there are sufficient samples. Third, the impact of two different kriging variance evaluation methods, expected improvement and estimated relative error, on the usage rate of surrogate model and the optimization result in the process of back-analysis. Last, the improvement of back-analysis efficiency by using surrogate model and dynamic distributed computing.
In the end, this study shows the performance of this system in two real geotechnical cases. In both cases, using expected improvement as evaluation methods to assist the optimization algorithm based on Kriging-based surrogate model is better than the optimization algorithm without surrogate model by reducing 40% of backanalysis time. Additionally, in both cases, the dynamic distributed computing architecture of the this study can reduce 90% of back-analysis time by using 12 computers to assist in numerical simulation.

論文摘要 I ABSTRACT II 圖目錄 VI 表目錄 XI 第1章 緒論 1 1.1.研究動機與目的 1 1.2.研究流程 2 1.3.論文架構 3 第2章 文獻與技術回顧 5 2.1.大地工程反算 5 2.2.最佳化演算法及其在大地工程反算之應用 6 2.2.1.基因演算法 8 2.2.2.蟻群演算法 10 2.2.3.粒子群演算法 12 2.2.4.自適應共變異數矩陣演化策略 13 2.3.代理模型及其在大地工程反算之應用 16 2.3.1.克利金法 17 2.3.2.克利金變異數於不確定性評估 22 2.4.基於克利金法代理模型最佳化演算法 23 2.5.動態分散式系統與RabbitMQ 24 2.6.Intel Math Kernel Library 27 2.7.有限元素法與Plaxis 2D 28 第3章 系統設計與實作 29 3.1.使用案例圖 29 3.2.系統架構 31 3.3.管理端節點系統設計 33 3.3.1.反算分析核心 33 3.3.2.使用者介面與操作 36 3.4.工作端節點系統設計 45 第4章 系統驗證分析 48 4.1.驗證函數與大地工程案例 48 4.1.1.平鈑載重試驗驗證案例 49 4.1.2.深開挖驗證案例 52 4.1.3.隧道開挖驗證案例 57 4.2.最佳化演算法驗證 60 4.3.克利金代理模型驗證 68 4.4.基於克利金代理模型最佳化演算法之驗證 72 4.5.動態分散式計算與代理模型效能之驗證 89 4.6.小結 91 第5章 案例分析 93 5.1.平鈑載重試驗個案分析 93 5.1.1.邊界條件與模型尺寸 93 5.1.2.土壤組成律與計算階段設定 94 5.1.3.參數選擇與目標函數 96 5.1.4.反算結果 97 5.2. 深開挖個案分析 101 5.2.1.邊界條件與模型尺寸 101 5.2.2.土壤組成律與計算階段設定 102 5.2.3.參數選擇與目標函數 104 5.2.4.反算結果 104 5.3.小結 110 第6章 結論與建議 111 6.1.結論 111 6.2.建議 112 參考文獻 113

[1]Gioda, G., & Maier, G. (1980). Direct search solution of an inverse problem in elastoplasticity: Identification of cohesion, friction angle andin situ stress by pressure tunnel tests. International Journal for Numerical Methods in Engineering, 15(12), 1823-1848. doi: 10.1002/nme.1620151207
[2]陳曦. (2018). 分散式計算與代理模型於大地工程反算分析之應用初探. (碩士), 國立臺灣科技大學.
[3]Feng, X. T., Zhao, H., & Li, S. (2004). A new displacement back analysis to identify mechanical geo‐material parameters based on hybrid intelligent methodology. International Journal for Numerical Analytical Methods in Geomechanics, 28(11), 1141-1165.
[4]Wang, G. G., & Shan, S. (2006). Review of Metamodeling Techniques in Support of Engineering Design Optimization. Journal of Mechanical Design, 129(4), 370-380. doi: 10.1115/1.2429697
[5]Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient global optimization of expensive black-box functions. Journal of Global optimization, 13(4), 455-492.
[6]Peck, R. B. (1969). Advantages and Limitations of the Observational Method in Applied Soil Mechanics. Géotechnique, 19(2), 171-187. doi: 10.1680/geot.1969.19.2.171
[7]Cividini, A., Jurina, L., & Gioda, G. (1981). Some aspects of ‘characterization’ problems in geomechanics. International Journal of Rock Mechanics and Mining Sciences & Geomechanics, 18(6), 487-503. doi: 10.1016/0148-9062(81)90513-1
[8]Kavanagh, K. T., & Clough, R. W. (1971). Finite element applications in the characterization of elastic solids. International Journal of Solids and Structures, 7(1), 11-23. doi: 10.1016/0020-7683(71)90015-1
[9]Yin, Z.-Y., Jin, Y.-F., Shen, J. S., & Hicher, P.-Y. (2018). Optimization techniques for identifying soil parameters in geotechnical engineering: Comparative study and enhancement. International Journal for Numerical and Analytical Methods in Geomechanics, 42(1), 70-94. doi: 10.1002/nag.2714
[10]Lim, A., Ou, C.-Y., & Hsieh, P.-G. (2010). Evaluation of clay constitutive models for analysis of deep excavation under undrained conditions. Journal of GeoEngineering, 5(1), 9-20.
[11]Anandarajah, A., & Agarwal, D. (1991). Computer-aided calibration of a soil plasticity model. International Journal for Numerical and Analytical Methods in Geomechanics, 15(12), 835-856. doi: 10.1002/nag.1610151202
[12]Ou, C. Y., & Tang, Y. G. (1994). Soil parameter determination for deep excavation analysis by optimization. Journal of the Chinese Institute of Engineers, 17(5), 671-688. doi: 10.1080/02533839.1994.9677634
[13]Swoboda, G., Ichikawa, Y., Dong, Q., & Zaki, M. (1999). Back analysis of large geotechnical models. International Journal for Numerical and Analytical Methods in Geomechanics, 23(13), 1455-1472. doi: 10.1002/(sici)1096-9853(199911)23:13<1455::Aid-nag33>3.0.Co;2-c
[14]Chi, S.-Y., Chern, J.-C., & Lin, C.-C. (2001). Optimized back-analysis for tunneling-induced ground movement using equivalent ground loss model. Tunnelling and Underground Space Technology, 16(3), 159-165. doi: 10.1016/s0886-7798(01)00048-7
[15]Zentar, R., Hicher, P. Y., & Moulin, G. (2001). Identification of soil parameters by inverse analysis. Computers and Geotechnics, 28(2), 129-144. doi: 10.1016/s0266-352x(00)00020-3
[16]Finno, R. J., & Calvello, M. (2005). Supported Excavations: Observational Method and Inverse Modeling. Journal of Geotechnical and Geoenvironmental Engineering, 131(7), 826-836. doi: 10.1061/(asce)1090-0241(2005)131:7(826)
[17]Kennedy, J., & Eberhart, R. (1995, 27 Nov.-1 Dec. 1995). Particle swarm optimization. Paper presented at the Proceedings of ICNN'95 - International Conference on Neural Networks.
[18]Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence: MIT press.
[19]Dorigo, M., Maniezzo, V., & Colorni, A. (1999). Ant System: An Autocatalytic Optimizing Process Technical Report 91-016.
[20]Meier, J., Schaedler, W., Borgatti, L., Corsini, A., & Schanz, T. (2008). Inverse Parameter Identification Technique Using PSO Algorithm Applied to Geotechnical Modeling. Journal of Artificial Evolution and Applications, 2008, 1-14. doi: 10.1155/2008/574613
[21]Knabe, T., Datcheva, M., Lahmer, T., Cotecchia, F., & Schanz, T. (2013). Identification of constitutive parameters of soil using an optimization strategy and statistical analysis. Computers and Geotechnics, 49, 143-157. doi: 10.1016/j.compgeo.2012.10.002
[22]Knabe, T., Zimmerer, M., Most, T., & Schanz, T. (2009). Identification of constitutive parameters for geomaterials modeling using an optimization strategy. Paper presented at the Proc. 2nd Intern. Conf. Computational Methods in Tunnelling, Ruhr University Bochum, Germany.
[23]Zhao, C., Lavasan, A. A., Barciaga, T., Zarev, V., Datcheva, M., & Schanz, T. (2015). Model validation and calibration via back analysis for mechanized tunnel simulations – The Western Scheldt tunnel case. Computers and Geotechnics, 69, 601-614. doi: 10.1016/j.compgeo.2015.07.003
[24]Meier, J., Datcheva, M., & Schanz, T. (2007). Identification of constitutive and geometrical parameters of numerical models with application in tunnelling. Paper presented at the ECCOMAS thematic conference on computational methods in tunnelling (EURO: TUN 2007), Vienna.
[25]Meier, J., Moser, M., Datcheva, M., & Schanz, T. (2013). Numerical modeling and inverse parameter estimation of the large-scale mass movement Gradenbach in Carinthia (Austria). Acta Geotechnica, 8(4), 355-371. doi: 10.1007/s11440-013-0211-1
[26]Fontan, M., Ndiaye, A., Breysse, D., Bos, F., & Fernandez, C. (2011). Soil–structure interaction: Parameters identification using particle swarm optimization. Computers structures, 89(17-18), 1602-1614.
[27]Zhang, Y., Gallipoli, D., & Augarde, C. (2013). Parameter identification for elasto-plastic modelling of unsaturated soils from pressuremeter tests by parallel modified particle swarm optimization. Computers and Geotechnics, 48, 293-303. doi: 10.1016/j.compgeo.2012.08.004
[28]Kahatadeniya, K. S., Nanakorn, P., & Neaupane, K. M. (2009). Determination of the critical failure surface for slope stability analysis using ant colony optimization. Engineering Geology, 108(1-2), 133-141.
[29]Abbaspour, K., Schulin, R., & Van Genuchten, M. T. (2001). Estimating unsaturated soil hydraulic parameters using ant colony optimization. Advances in water resources, 24(8), 827-841.
[30]Gao, W. (2015). Identification of constitutive model for rock materials based on immune continuous ant colony algorithm. Materials Research Innovations, 19(sup5), S5-311-S315-315.
[31]Levasseur, S., Malécot, Y., Boulon, M., & Flavigny, E. (2008). Soil parameter identification using a genetic algorithm. International Journal for Numerical and Analytical Methods in Geomechanics, 32(2), 189-213. doi: 10.1002/nag.614
[32]Levasseur, S., Malecot, Y., Boulon, M., & Flavigny, E. (2010). Statistical inverse analysis based on genetic algorithm and principal component analysis: Applications to excavation problems and pressuremeter tests. International Journal for Numerical and Analytical Methods in Geomechanics, 34(5), 471-491. doi: 10.1002/nag.813
[33]Huang, Z., Zhang, L., Cheng, S., Zhang, J., & Xia, X. (2015). Back-analysis and parameter identification for deep excavation based on pareto multiobjective optimization. Journal of Aerospace Engineering, 28(6), A4014007.
[34]Rechea, C., Levasseur, S., & Finno, R. (2008). Inverse analysis techniques for parameter identification in simulation of excavation support systems. Computers and Geotechnics, 35(3), 331-345. doi: 10.1016/j.compgeo.2007.08.008
[35]Pal, S., Wathugala, G. W., & Kundu, S. (1996). Calibration of a constitutive model using genetic algorithms. Computers and Geotechnics, 19(4), 325-348.
[36]Samarajiva, P., Macari, E. J., & Wathugala, W. (2005). Genetic algorithms for the calibration of constitutive models for soils. International Journal of Geomechanics, 5(3), 206-217.
[37]Feng, X. T., Li, S., Liao, H., & Yang, C. (2002). Identification of non‐linear stress–strain–time relationship of soils using genetic algorithm. International Journal for Numerical Analytical Methods in Geomechanics, 26(8), 815-830.
[38] Rokonuzzaman, M., & Sakai, T. (2010). Calibration of the parameters for a hardening–softening constitutive model using genetic algorithms. Computers and Geotechnics, 37(4), 573-579.
[39]Haupt, R. L., & Ellen Haupt, S. (2004). Practical genetic algorithms (Second ed.): John Wiley & Sons.
[40]Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE computational intelligence magazine, 1(4), 28-39.
[41]Shi, Y., & Eberhart, R. C. (1998, 1998//). Parameter Selection in Particle Swarm Optimization. Paper presented at the Evolutionary Programming VII, Berlin, Heidelberg.
[42]Hansen, N., & Ostermeier, A. (1996, 20-22 May 1996). Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation. Paper presented at the Proceedings of IEEE International Conference on Evolutionary Computation.
[43]McKay, M. D., Beckman, R. J., & Conover, W. J. (2000). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 42(1), 55-61.
[44]Khaledi, K., Miro, S., König, M., & Schanz, T. (2014). Robust and reliable metamodels for mechanized tunnel simulations. Computers and Geotechnics, 61, 1-12.
[45]Kleijnen, J. P. (2009). Kriging metamodeling in simulation: A review. European journal of operational research, 192(3), 707-716.
[46]Obrzud, R. F., Vulliet, L., & Truty, A. (2009). A combined neural network/gradient‐based approach for the identification of constitutive model parameters using self‐boring pressuremeter tests. International Journal for Numerical Analytical Methods in Geomechanics, 33(6), 817-849.
[47]Hashash, Y. M., Levasseur, S., Osouli, A., Finno, R., & Malecot, Y. (2010). Comparison of two inverse analysis techniques for learning deep excavation response. Computers and Geotechnics, 37(3), 323-333.
[48]Ninić, J., Freitag, S., & Meschke, G. (2017). A hybrid finite element and surrogate modelling approach for simulation and monitoring supported TBM steering. Tunnelling and Underground Space Technology, 63, 12-28.
[49] Zhao, H.-b., & Yin, S. (2009). Geomechanical parameters identification by particle swarm optimization and support vector machine. Applied Mathematical Modelling, 33(10), 3997-4012.
[50]Forrester, A. I., & Keane, A. J. (2009). Recent advances in surrogate-based optimization. Progress in aerospace sciences, 45(1-3), 50-79.
[51]Cressie, N. (2015). Statistics for spatial data: John Wiley & Sons.
[52]McBratney, A., & Webster, R. (1986). Choosing functions for semi‐variograms of soil properties and fitting them to sampling estimates. Journal of soil Science, 37(4), 617-639.
[53]Chen, L., Gao, Y., Zhu, D., Yuan, Y., & Liu, Y. (2019). Quantifying the scale effect in geospatial big data using semi-variograms. PLOS ONE, 14(11), e0225139. doi: 10.1371/journal.pone.0225139
[54]Sun, W., Minasny, B., & McBratney, A. (2012). Analysis and prediction of soil properties using local regression-kriging. Geoderma, 171, 16-23.
[55]Lizotte, D. J., Wang, T., Bowling, M. H., & Schuurmans, D. (2007). Automatic Gait Optimization with Gaussian Process Regression. Paper presented at the Proceedings of the 20th International Joint Conference on Artificial Intelligence, Proceedings of the 20th International Joint Conference on Artificial Intelligence.
[56]Standardization., I. O. f. (2014). Information technology — Advanced Message Queuing Protocol (AMQP) v1.0 specification (Vol. ISO/IEC 19464:2014).
[57]Michael Klishin et al. AMQP 0-9-1 Model Explained. Retrieved 08/27, 2020, from https://www.rabbitmq.com/tutorials/amqp-concepts.html
[58]Michael Klishin et al. Remote procedure call (RPC)(using the amqp.node client). Retrieved 08/27, 2020, from https://www.rabbitmq.com/tutorials/tutorial-six-javascript.html
[59]Intel Corporation. (2020). Developer Reference for Intel® Math Kernel Library. Retrieved 08/27, 2020, from https://software.intel.com/content/www/us/en/devel
op/documentation/mkl-developer-reference-c/top.html
[60]Brinkgreve, R., Engin, E., & Swolfs, W. (2017). Plaxis 2D manual.
[61]Larsson, R. (2001). Investigations and load tests in clay till. Results from a series of investigations and load tests in the test field at Tornhill outside Lund in southern Sweden SGI Rapport (Vol. 59, pp. 169). Linköping: Swedish Geotechnical Institute.
[62]Finno Richard, J., Kim, S., Lewis, J., & Van Winkle, N. (2018). Observed Performance of a Sheetpile-Supported Excavation in Chicago Clays. Journal of Geotechnical and Geoenvironmental Engineering, 145. doi: 10.1061/(ASCE)GT.1943-5606.0002010
[63]Khanal, S. (2013). Backcalculation of Plate Loading Tests using PLAXIS 2D and the Hardening Soil Model. (Maste), Norwegian University of Science and Technology. Retrieved from http://hdl.handle.net/11250/232715
[64]Kim, S., & Finno, R. J. (2019). Inverse analysis of a supported excavation in Chicago. Journal of Geotechnical and Geoenvironmental Engineering, 145(9), 04019050.

QR CODE