簡易檢索 / 詳目顯示

研究生: 楊博硯
Po-Yen Yang
論文名稱: 探討污水中氯化鈉濃度對多層複合濾料水質淨化系統的成效影響
The effectiveness of sodium chloride concentration in sewage on Multi-Soil-Laying system
指導教授: 何嘉浚
Chia-Chun Ho
口試委員: 陳起鳳
Chi-Feng Chen
林逸彬
Yi-Pin Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 82
中文關鍵詞: 多層複合濾料水質淨化系統污水淨化含氯化鈉污水人工合成污水沸石
外文關鍵詞: Multi-Soil-Layering system, Wastewater treatment, Sodium Chloride Sewage, Artificial Sewage, Zeolite
相關次數: 點閱:232下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多層複合濾料水質淨化系統(又稱MSL系統)為日本開發的新型的自然淨化系統,MSL系統為近年在臺灣較熱門的現地處理設施。台灣許多地區的河川或水庫的水體是有受到污染的,其中沿海地區的污染水體容易受到海水潮汐及海風的影響使水體中含有部分的氯化鈉。本研究透過行政院環境保護署對於台灣各水庫及河川的水質監測報告中發現,台灣離島的水庫及本島沿海河川段均有氯化鈉較高同時水體受汙染的狀況存在。而若需使用MSL系統對這些地區的水質進行改善,我們則必須要去探討氯化鈉對於MSL系統削減成效的影響。
    經過實驗證實氯化鈉對於MSL系統的削減成效存在負面的影響,其中對於氨氮及化學需氧量的削減成效影響最大,磷酸鹽及硝酸鹽氮影響較小。以這個實驗結果提出兩種解決方案1、更換系統滲透濾層材料為沸石(稱之為Z-MSL)。2、更換系統馴養方法(稱之為T’-MSL)。並經過實驗證實兩種方法均對於減少氯化鈉對系統的影響有好的效果,其中在減少氯化鈉對化學需氧量削減成效的影響,僅有更換系統馴養方法有效,更換材料為沸石對於減少氯化鈉對化學需氧量削減成效的影響,並無顯著的成效。


    The Multi-Soil Laying System (MSL system) is a novel Natural Treatment System (NTS) that created in Japan. In recent years, the MSL system has gained popularity as an onsite purification facility in Taiwan. Many rivers and reservoirs in various regions of Taiwan are polluted. Coastal areas, in particular, are susceptible to contamination influenced by tidal fluctuations and sea breezes, leading to the presence of sodium chloride in the water. This study examines water quality monitoring reports from Taiwan's Environmental Protection Administration and identifies elevated levels of sodium chloride in reservoirs on Taiwan's outlying islands and coastal river segments on Taiwan’s main islands, indicating water pollution. If we want to improve the water quality in these regions with the MSL system, it is necessary to investigate the impact of sodium chloride on its efficiency.
    Experimental results confirm a negative impact of sodium chloride on the removal effectiveness of the MSL system. The greatest impact is observed on the reduction of ammonia nitrogen and chemical oxygen demand, while the effects on phosphate and nitrate nitrogen are less pronounced. Based on these experimental result, two potential solutions are proposed : (1) replacing the permeable layer material with zeolite (referred to as Z-MSL) (2) modifying the system culture method (referred to as T’-MSL). Experimental validation demonstrates that both approaches effectively mitigate the adverse effects of sodium chloride on the system. However, in terms of reducing the impact of sodium chloride on chemical oxygen demand removal, only the modifying the system culture method proves effective. The replacement of material with zeolite does not yield significant results in reducing the impact of sodium chloride on chemical oxygen demand removal.

    摘要 I ABSTRACT II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XII 縮寫名詞說明 XIV 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 4 1.3 研究內容及流程 4 第二章 文獻回顧 7 2.1 多層複合濾料水質淨化系統(Multi Soil Layering system , MSL) 7 2.1.1 多層複合濾料水質過濾系統(MSL)之淨化機制 7 2.1.2 MSL系統案例介紹 11 2.2 氯化鈉對於MSL系統的影響 14 2.2.1 氯化鈉對於系統組成材料的影響 14 2.2.2 氯化鈉對於生物處理的影響 15 2.3 人工合成污水 21 2.3.1 氨氮 21 2.3.2 正磷酸鹽 21 2.3.3 化學需氧量 22 第三章 研究方法與設備 23 3.1 研究方法 23 3.1.1 氯化鈉對於土壤的影響 23 3.1.2 合成污水目標濃度設定及配置 24 3.1.3 設計MSL系統組成、操作方法及馴養方法 25 3.1.4 主實驗研究方法 28 3.1.5 水樣保存方式 29 3.1.6 水質檢驗方式 30 3.2 研究設備 31 3.2.1 供水設施 31 3.2.2 水質檢驗設備及藥劑 33 3.3 實驗材料 37 3.3.1 MSL系統組成材料 37 3.3.2 實驗污水 41 3.4 實驗步驟及過程 43 3.4.1 MSL系統組立 43 3.4.2 MSL系統養護及馴養 45 3.4.3 氯化鈉對於T-MSL削減汙染物能力的影響(實驗一) 47 3.4.4 氯化鈉對於Z-MSL削減汙染物能力的影響(實驗二) 48 3.4.5 氯化鈉對於T’-MSL削減汙染物能力的影響(實驗三) 49 第四章 實驗結果與分析 50 4.1 氯化鈉對於T-MSL削減汙染物能力的影響 50 4.1.1 總溶解固體實驗結果 50 4.1.2 氨氮(NH3-N)及硝酸鹽氮(NO3)實驗結果 51 4.1.3 正磷酸鹽(PO4)實驗結果 53 4.1.4 化學需氧量(COD)實驗結果 54 4.2 氯化鈉對於Z-MSL削減汙染物能力的影響 55 4.2.1 總溶解固體(TDS)實驗結果與T-MSL成效比較 55 4.2.2 氨氮(NH3-N)及硝酸鹽氮(NO3)實驗結果與T-MSL成效比較 56 4.2.3 正磷酸鹽(PO4)實驗結果與T-MSL成效比較 59 4.2.4 化學需氧量(COD)實驗結果與T-MSL成效比較 60 4.3 實驗(三) 氯化鈉對於T’-MSL削減汙染物能力的影響 62 4.3.1 總溶解固體(TDS)實驗結果與T-MSL成效比較 62 4.3.2 氨氮(NH3-N)及硝酸鹽氮(NO3)實驗結果與T-MSL成效比較 63 4.3.3 正磷酸鹽(PO4)實驗結果與T-MSL成效比較 66 4.3.4 化學需氧量(COD)實驗結果與T-MSL成效比較 67 4.4 實驗結果分析總結 69 4.4.1 氨氮(NH4-N)及硝酸鹽氮(NO3)實驗結果總結 69 4.4.2 正磷酸鹽(PO4)實驗結果總結 71 4.4.3 化學需氧量(COD)實驗結果總結 72 第五章 結論與建議 74 5.1 結論 74 5.2 建議 76 參考文獻 77 附錄-實驗數據 80 5.1 T-MSL實驗數據 80 5.2 Z-MSL實驗數據 81 5.3 T’-MSL實驗數據 82

    1. 行政院環境保護署環境檢驗所(2020)。水中氨氮檢測方法-靛酚比色法。
    2. 行政院環境保護署環境檢驗所(2010)。水中磷檢測方法-分光光度計/維生素丙法。
    3. 行政院環境保護署環境檢驗所(2013)。水中總溶解固體及懸浮固體檢測方法-103~105℃乾燥。
    4. 李權宸、鮑建國、周旋、信欣、萬紅霞(2006)。高鹽度有機廢水對生物處理系統的影響研究進展。環境科學與技術,23(6),109-111
    5. 李宗睿、張勇、徐坷坷(2014)。高鹽度有機廢水生物處理技術分析與展望。環保科技,20(1),17-21。
    6. 何嘉浚(2012)。地工合成材料於多層複合濾料過濾系統之應用。行政院國家科學委員會100 年度精簡報告,未出版。
    7. 郭豔麗、張培玉、於德爽、成廣勇(2008)。嗜鹽菌與高鹽度廢水生物處理研究進展。環境科學與管理,33(9),79-83。
    8. 劉正(2004)。高濃度含鹽廢水生物處理技術。化工環保,209-211。
    9. 羅固源、溫亮、豆俊峰(2004)。SUFR 系統去除廢水中COD 和氮、磷的模擬。重慶大學學報,27(5),122-126。
    10. Gerardi, M. H. (2003). Nitrification and denitrification in the activated sludge process. John Wiley & Sons.
    11. Hanson, B., Grattan, S. R., & Fulton, A. (1999). Agricultural salinity and drainage (pp. 159p-159p). University of California, Davis: University of California Irrigation Program.
    12. Ingram, M. (1940). The influence of sodium chloride and temperature on the endogenous respiration of B. cereus. The Journal of general physiology, 23(6), 773.
    13. Kincannon, D. F., & Gaudy Jr, A. F. (1966). Some effects of high salt concentrations on activated sludge. Journal (Water Pollution Control Federation), 1148-1159.
    14. Li, A., & Guowei, G. (1993). The treatment of saline wastewater using a two-stage contact oxidation method. Water Science and Technology, 28(7), 31-37.
    15. Luanmanee, S., Attanandana, T., Masunaga, T., & Wakatsuki, T. (2001). The efficiency of a multi-soil-layering system on domestic wastewater treatment during the ninth and tenth years of operation. Ecological Engineering, 18(2), 185-199.
    16. Luanmanee, S., Boonsook, P., Attanandana, T., Saitthiti, B., Panichajakul, C., & Wakatsuki, T. (2002). Effect of intermittent aeration regulation of a multi-soil-layering system on domestic wastewater treatment in Thailand. Ecological Engineering, 18(4), 415-428.
    17. Lucke, T., & Nichols, P. W. (2015). The pollution removal and stormwater reduction performance of street-side bioretention basins after ten years in operation. Science of the Total Environment, 536, 784-792.
    18. Mazloomi, F., & Jalali, M. (2016). Ammonium removal from aqueous solutions by natural Iranian zeolite in the presence of organic acids, cations and anions. Journal of Environmental Chemical Engineering, 4(1), 240-249.
    19. Peng, X., Wang, M., Hu, F., Qiu, F., Dai, H., & Cao, Z. (2019). Facile fabrication of hollow biochar carbon-doped TiO2/CuO composites for the photocatalytic degradation of ammonia nitrogen from aqueous solution. Journal of Alloys and Compounds, 770, 1055-1063.
    20. Seip, B., Galinski, E. A., & Kurz, M. (2011). Natural and engineered hydroxyectoine production based on the Pseudomonas stutzeri ectABCD-ask gene cluster. Applied and environmental microbiology, 77(4), 1368-1374.
    21. Tu, Y., Feng, P., Ren, Y., Cao, Z., Wang, R., & Xu, Z. (2019). Adsorption of ammonia nitrogen on lignite and its influence on coal water slurry preparation. Fuel, 238, 34-43.
    22. United Nations , UN (2023).UN World Water Development Report 2023
    23. Uygur, A., & Kargı, F. (2004). Salt inhibition on biological nutrient removal from saline wastewater in a sequencing batch reactor. Enzyme and Microbial Technology, 34(3-4), 313-318.
    24. Wang, S., Lin, X., Yu, H., Wang, Z., Xia, H., An, J., & Fan, G. (2017). Nitrogen removal from urban stormwater runoff by stepped bioretention systems. Ecological Engineering, 106, 340-348.
    25. Woolard, C., & Irvine, R. (1995). Treatment of hypersaline wastewater in the sequencing batch reactor. Water research, 29(4), 1159-1168.
    26. World Meteorological Organization , WMO (2022).State of Global Water Resources report

    無法下載圖示 全文公開日期 2025/08/29 (校內網路)
    全文公開日期 2025/08/29 (校外網路)
    全文公開日期 2025/08/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE