簡易檢索 / 詳目顯示

研究生: 吳昇航
Sheng-Hang, Wu
論文名稱: 長距離電場耦合式無線能量傳輸系統之研製
Design and Implementation of Long Distance Electric Field Based Wireless Power Transfer
指導教授: 黃仁宏
Peter Huang
邱煌仁
Huang-Jen Chiu
口試委員: 黃仁宏
Peter Huang
邱煌仁
Huang-Jen Chiu
林景源
Jing-Yuan Lin
張佑丞
Yu-Chen, Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 67
中文關鍵詞: 電場耦合式電容性無線能量傳輸無線能量傳輸 系統雙邊 LCLC 諧振
外文關鍵詞: Electric Field Based, Capacitive Wireless Power Transfer, Wireless Power Transfer System, Double Sided LCLC Resonant
相關次數: 點閱:211下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

因近年來電子產品使用率逐年提升,為使電子產品於充電上能更加快速、簡單且安全,並去除電子接點充電所造成的各種缺點。本文提出一種電子產品充電應用的電場耦合式無線能量傳輸系統。本文首先分類各種無線能量傳輸系統,同時介紹各個無線能量傳輸系統的基本動作原理與比較各系統的優缺點。再來選擇電場耦合式無線能量傳輸系統為本文的傳輸方式,提出耦合極板的π型等效模型的推導與分析,並比較各電場耦合式無線能量傳輸系統的諧振架構。最終選用雙邊LCLC諧振式電場耦合式無線能量傳輸系統為本文的主架構,並分析其基本動作原理。
透過分析本文進一步提出一套設計流程,依照此流程進行設計,可確保電場耦合式無線能量傳輸系統於指定之距離、負載變動範圍以及適當的頻率變動頻率範圍內仍可以達到穩定的電壓輸出。最終實作出輸出入電壓均為100 V,輸出功率為440 W,傳送距離為5 cm且最高效率為72%之雙邊LCLC諧振式電場耦合式無線能量傳輸轉換器原型機。


Due to the usage rate of the consumer electronics product increases year by year. In order to charge the product faster, easier, safer and get rid of disadvantage cause by electric junction. This thesis proposed a capacitive (electric field based) wireless power transfer system for consumer electronics product. First, the fundamental principal for each wireless power transfer system has been introduced. Next, the precise π-type equivalent model for the capacitive power transfer system’s coupling plate has been proposed. Then each resonant structure for capacitive power transfer system has been compared and analyzed. Finally, Double-Sided LCLC resonant capacitive power transfer system has been chosen and analyzed.
By analyzing a design process that can guarantee capacitive power transfer system with steady output voltage between designated distance, load variation range and allowable frequency variation range has been referred in this thesis. Finally, a prototype of Double-Sided LCLC resonant capacitive power transfer system with 100V input and output voltage, 440W output power, 5cm plate distance, and 72% peak efficiency has been implemented and measured.

摘要 i Abstract ii 誌謝 iii 目錄 iv 圖索引 vi 表索引 ix 第一章 緒論 1 1.1 研究背景與動機 1 1.2 無線能量傳輸系統簡介與分類 2 1.2.1 磁場耦合式 2 1.2.2 電場耦合式 3 1.2.3 微波能量轉換式 3 1.2.4 雷射能量轉換式 4 第二章 耦合極板電容分析 5 2.1 耦合極板電容之等效模型分析 5 2.1.1 基本電容等效模型 5 2.1.1 π型電容等效模型 6 2.2 耦合極板電容量測 11 2.2.1 直接量測法 11 2.2.2 四電容等效電路量測法 12 2.2.3 原始極板電路量測法 14 2.3 Maxwell模擬驗證 19 2.3.1 直接量測法模擬 21 2.3.2 原始極板電路量測法模擬 21 2.3.3 量測法比較 22 第三章 電場耦合式無線能量傳輸架構比較 23 3.1 史密斯圖 23 3.1.1 史密斯圖介紹 23 3.1.2 史密斯圖應用 25 3.1.3 效率比較之應用 26 3.2 諧振架構比較 27 3.2.1 雙邊LC串聯諧振式電路架構 27 3.2.2 雙邊CLLC諧振式電路架構 28 3.2.3 雙邊LCLC諧振式電路架構 30 3.2.4 各架構間比較 31 第四章 電路分析與設計 32 4.1 雙邊LCLC諧振式架構分析與元件參數推導 32 4.2 增益曲線推導 38 4.3 電路規格與元件參數設計 43 4.3.1 電路規格 43 4.3.2 電路增益曲線設計 45 第五章 模擬與實驗結果 46 5.1 雙邊LCLC諧振式電路模擬 46 5.2 實驗波形與效率 48 第六章 結論與未來展望 52 6.1 結論 52 6.2 未來展望 52 參考文獻 54

[1] J. M. Wang and S. T. Wu. “A Synchronous Buck DC-DC Converter Using a Novel Dual-Mode Control Scheme to Improve Efficiency,” in IEEE Transactions on Power Electronics, vol. 32, no. 9, pp. 6983-6993, September 2017.
[2] B. C. Wang, Y. Yuan, Y. Zhou and X. F. Sun. “Buck/Boost Bidirectional Converter TCM Control Without Zero-Crossing Detection,” in 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Hefei, May 2016.
[3] J. H. Jung, H. S. Kim, M. H. Ryu and J. W. Baek. “Design Methodology of Bidirectional CLLC Resonant Converter for High-Frequency Isolation of DC Distribution Systems,” in IEEE Transactions on Power Electronics, vol.28, no.4, pp. 1741-1755, August 2012.
[4] A. Esser and H.C. Skudelny. “A new approach to power supplies for robots,” in IEEE Transactions on Industry Applications, vol. 27, no. 5, pp 872-875, October 1990.
[5] A. Kawamun, K. Ishioka and J. Hirai. “Wireless transmission of power and information through one high frequency resonant AC link inverter for robot manipulator applications,” in Conference Record of the 13th IEEE Industry Applications Conference Meeting IAS ’95, vol. 3, pp 2367-2372, October 1995.
[6] T. Wang, X. S. Fu, J. Ma, T. Zhan, Q. J. Wang, X. Y. Yi, G. H. Wang, J. M. Li and T. Wang. “Analysis of impedance matching network on LED novel driving system based on the wireless power transfer,” in 2015 12th China International Forum on Solid State Lighting (SSLCHINA), Shenzhen, pp. 93-96, November 2015.
[7] V. T. Nguyen, S. H. Kang, J. H. Choi and C. W. Jung, “Magnetic resonance wireless power transfer using three-coil system with single planar receiver for laptop applications,” in IEEE Transactions on Consumer Electronics, vol. 61, no. 2, pp. 160-166, May 2015.
[8] V. T. Nguyen, S. H. Kang and C. W. Jung, “Wireless power transfer for mobile devices with consideration of ground effect,” in 2015 IEEE Wireless Power Transfer Conference (WPTC), Boulder, pp. 1-4, May 2015.
[9] S. Y. Jeong, V. X. Thai, J. H. Park and C. T. Rim, “Self-Inductance-Based Metal Object Detection With Mistuned Resonant Circuits and Nullifying Induced Voltage for Wireless EV Chargers,” in IEEE Transactions on Power Electronics, vol. 34, no. 1, pp.748-758, January 2019.
[10] A. Kumar, S. Pervaiz, C. K. Chang, S. Korhummel, Z. Popovic and K. K. Afridi, “Investigation of power transfer density enhancement in large air-gap capacitive wireless power transfer systems,” in 2015 IEEE Wireless Power Transfer Conference (WPTC), Boulder, May 2015.
[11] W. C. Brown, “The History of Power Transmission by Radio Waves,” in IEEE Transactions on Microwave Theory and Techniques, vol. 32, no. 9, pp. 1230-1242, September 1984.
[12] H. Zhang, F. Lu, H. Hofmann, W. Liu and C. Chris Mi, “Six-Plate Capacitive Coupler to Reduce Electric Field Emission in Large Air-Gap Capacitive Power Transfer,” in IEEE Transactions on Power Electronics, vol. 33, no. 1, pp. 665-675, January 2018.
[13] H. Zhang, F. Lu, H. Hofmann, W. Liu and C. Chris Mi, “A Four-Plate Compact Capacitive Coupler Design and LCL-Compensated Topology for Capacitive Power Transfer in Electric Vehicle Charging,” in IEEE Transactions on Power Electronics, vol. 31, no. 12, pp. 8541-8551, December 2016.
[14] S. Sinha, A. Kumar, B. Regensburger and K. K. Afridi, “A New Design Approach to Mitigating the Effect of Parasitics in Capacitive Wireless Power Transfer Systems for Electric Vehicle Charging,” in IEEE Transactions on Transportation Electrification, vol. 5, no. 4, pp. 1040-1059, December 2019.
[15] K. Yamada and T. Ohira, “Graphical Representation of the Power Transfer Efficiency of Lumped-Element Circuits Based on Hyperbolic Geometry,” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 5, pp. 485-489, May 2017.
[16] F. Lu, H. Zhang, H. Hofmann and C. Chris Mi, “A Double-Sided LC-Compensation Circuit for Loosely Coupled Capacitive Power Transfer,” in IEEE Transactions on Power Electronics, vol. 33, no. 2, pp. 1633-1643, February 2018.
[17] F. Lu, H. Zhang, H. Hofmann and C. Chris Mi, “A CLLC-compensated high power and large air-gap capacitive power transfer system for electric vehicle charging applications,” in 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, March 2016.
[18] F. Lu, H. Zhang, H. Hofmann and C. Chris Mi, “A Double-Sided LCLC-Compensated Capacitive Power Transfer System for Electric Vehicle Charging,” in IEEE Transactions on Power Electronics, vol. 30, no. 11, pp. 6011-6014, November 2015.
[19] C. Zheng, J. S. Lai, R. Chen, W. E. Faraci, Z. U. Zahid, B. Gu, L. Zhang, G. Lisi and D. Anderson, “High-Efficiency Contactless Power Transfer System for Electric Vehicle Battery Charging Application,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, pp. 65-74, March 2015.

無法下載圖示 全文公開日期 2025/07/02 (校內網路)
全文公開日期 2025/07/02 (校外網路)
全文公開日期 2025/07/02 (國家圖書館:臺灣博碩士論文系統)
QR CODE