簡易檢索 / 詳目顯示

研究生: 蔡期琮
Chi-Tsung Tsai
論文名稱: 水冷式引擎之熱傳性能改良:計算模擬與實驗量測
Improvement of Heat Transfer Performance of Water-Cooled Internal Combustion Engine: Computational Simulation and Temperature Measurements
指導教授: 黃榮芳
Rong-Fung Huang
口試委員: 陳明志
Ming-Jyh Chern
葉啟南
Chi-nan Yeh
劉昌煥
Chang-Huan Liu
張家和
Chir-ho Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 214
中文關鍵詞: 計算模擬水冷式引擎熱傳
外文關鍵詞: Simulation, Heat Transfer, Water-Cooled
相關次數: 點閱:227下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

引擎缸壁溫度的均勻度取決於汽缸水套的幾何形狀與流場狀態,而入水口、出水口與墊片開口的位置對溫度均勻分佈的影響更為深鉅。因此,本研究利用商業套裝計算流體力學(computational fluid dynamics, CFD)軟體STAR-CD,針對一部四行程單缸水冷式引擎之散熱機構,進行模擬計算並結合實驗的方式,改良汽缸水套的設計,以提升其散熱效果。設計過程先以數值計算的方式,對原始汽缸水套進行模擬,藉由數值計算所得的熱對流係數並配合實驗量測的溫度,求得模擬穩態的缸壁局部熱通量之方法與得知水套欲修改的方向。為了解決原始汽缸流場的混亂狀態,起初在汽缸頭水套內設置檔板,並修改墊片的開口位置,由模擬計算結果得知,在汽缸壁周圍平均溫度與溫度均勻度皆改善了不少,之後在汽缸體的入水口處設置檔板,發現其散熱效果更佳。這使用實驗量得的缸壁溫度配合CFD方法計算缸壁的局部熱通量,由改良後的模擬計算與實驗結果證明,此種方法對於預先得知汽缸體的熱傳分佈狀況明顯有效果。改良後的汽缸壁周圍平均溫度改善率最高為10.2%,而汽缸壁的溫度均勻改善率最高為72.4%。另外,經各項修正後,引擎扭力、馬力、油耗等等性能並未下降。


A methodology is developed to improve the heat dissipation performance of a single-cylinder, four-stroke-cycle, water-cooled engine by employing the experimental method in conjunction with the numerical simulation technique. At first, the commercial code, STAR-CD, is employed to calculate the velocity distributions of the water flow in the water jacket surrounding the engine cylinder and cylinder head based on the situation of non-combusting engine operation. By using a empirical formula the heat transfer coefficient distributions on the engine cylinder and the cylinder head are obtained. The real temperature distributions around the engine cylinder and the cylinder head are measured experimentally by attaching 40 T-type thermocouples with 250 μm bead diameter to circumferential positions of the engine cylinder and cylinder head. The measured temperature data and the calculated heat-transfer coefficients are used to compute the local heat flux by using the fundamental conduction heat transfer formula. With the distributions of heat flux, the STAR-CD is employed to calculate the flow field and the temperature distributions of the fluids and the cylinder walls. The calculated wall temperatures are compared with the measured temperatures. If the differences between the calculated and the measured temperatures are beyond a prescribed threshold, the wall temperatures are modified and are used to calculate new heat flux distributions. Final convergence is attained when the prescribed threshold is satisfied. The converged temperature distributions are then assumed to be the designed temperatures. With the developed method, the improvement on the temperature distributions around the engine is performed by modifying the flow channel geometry of the water jacket. Totally 21 modifications are proposed. After tedious operations of the developed methodology, an optimized design is finally obtained. The new water jacket design can provide much better heat transfer and temperature distributions according to the computation results. The new design is mockup and the temperature distributions are experimentally measured. The computed temperatures are in good agreement with the experimental results. The circumferentially averaged temperature and the maximum temperature difference around the cylinder are lowered by about 10% and 72%, respectively without scarification of engine horsepower and torque output.

摘要 i Abstract ii 致謝 iv 目錄 v 符號索引 vii 表圖索引 x 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 研究目的 6 第二章 問題陳述與研究構想 8 2.1 問題陳述 8 2.2 研究構想 9 第三章 實驗方法、設備與儀器 11 3.1 實驗方法 11 3.2 實驗設備與儀器 11 3.2.1 引擎 11 3.2.2 動力計 12 3.2.3 油耗量測設備 12 3.2.4 廢氣量測設備 12 3.2.5 流量量測設備 13 3.2.6 溫度量測系統 13 第四章 計算模擬方法 15 4.1 數值模擬 15 4.1.1 計算網格 15 4.1.2 邊界條件與初始條件 16 4.2 利用CFD方法計算缸壁局部熱通量 17 4.2.1 統御方程式與紊流模式 18 4.2.2 離散方程式與SIMPLE算法 22 4.2.3 收斂標準 27 4.2.4 壁面函數法 28 4.2.5 一維熱傳方程式 30 4.2.6 熱通量的修正方法 31 第五章 結果與討論 34 5.1 原始引擎溫度量測結果 34 5.2原始引擎溫度計算結果 36 5.3入水口沒有檔板的修正 37 5.3.1 MN1 ~ MN4入水口角度的修正 38 5.4入水口有檔板的修正 40 5.4.1 MP1 ~ MP4入水口角度的修正 40 5.4.2 MP5 ~ MP7入水口高度的修正 42 5.4.3 MP8 ~ MP10汽缸水套深度的修正 42 5.4.4 MP11 ~ MP15入水口位置的修正 43 5.5最佳設計與改善的程度 44 5.5.1 MP16引擎溫度量測結果 45 第六章 結論與建議 48 6.1 結論 48 6.2 建議 49 參考文獻 50

[1] Aoyagi, Y., Takenaka, Y., Niino, S., Watanabe, A. and Joko, I., “Numerical Simulation and Experimental Observation of Coolant Flow Around Cylinder Liners in V-8 Engine,” Journal of Engines, SAE Transactions, Vol. 97, 1988, pp. 141-150, SAE 880109.
[2] Harashina, K., Murata, K., and Satoh, H., “A New Cylinder Cooling System Using Oil,” Journal of Engines, SAE Transactions-Section 3, Vol. 104, 1995, pp. 1846-1850, SAE 951796.
[3] 李進修, 王漢英, 汽機車引擎設計與分析技術, 國立清華大學出版社, 2005.
[4] Boeman, G. and Nishiwaki, K., “Internal-Combustion Engine Heat Transfer,” Progress in Energy and Combustion Science, Vol. 13, No. 1, 1987, pp. 1-46.
[5] Alkidas, A. C., Puzinauskas, P. V., and Peterson, R. C., “Combustion and Heat Transfer Studies in a Spark-Ignited Multivalve Optical Engine,” Journal of Engines, SAE Transactions-Section 3, Part 1, Vol. 99, 1990, pp. 817-830, SAE 900353.
[6] Chen, C. and Veshagh, A., “A One-Dimensional Model for In-Cylinder Heat Convection Based on the Boundary Layer Theory,” Journal of Engines, SAE Transactions-Section 3, Vol. 101, 1992, pp. 1776-1792, SAE 921733.
[7] Jennings, M. J. and Morel, T., “A Computational Study of Wall Temperature Effects on Engine Heat Transfer,” Journal of Engines, SAE Transactions-Section 3, Vol. 100, 1991, pp. 641-656, SAE 910459.
[8] Li, C. H., “Thermal and Mechanical Behavior of an L-4 Engine,” Journal of Engines, SAE Transactions, Vol. 97, 1988, pp. 1318-1331, SAE 881149.
[9] Abraham, J., Ramoth, D. and Manniato, J., “3D Steady-State Wall Heat Fluxes and Thermal Analysis of a Stratifird-Charge Rotary Engine,” Journal of Engines, SAE Transactions-Section 3, Vol. 100, 1991, pp. 1214-1226, SAE 910706.

[10] Chiodi, M. and Bargende, M., “Improvement of Engine Heat-Transfer Calculation in the three-Dimensional Simulation Using a Phenomenological Heat-Transfer Model,” Journal of Engines, SAE Transactions-Section 3, Vol. 110, 2001, pp. 2291-2303, SAE 2001-01-3601.
[11] Kleemann, A. P., Menegazzi, P., and Henriot, S., “Numerical Study Knock for SI Engine by Thermally Coupling Combustion Chamber and Cooling Circuit Simulation,” Journal of Engines, SAE Transactions-Section 3, Vol. 112, 2003, pp. 821-831, SAE 2003-01-0563.
[12] Miyairi, Y., “Computer Smulation of an LHR Di Diesel Engine,” Journal of Engines, SAE Transactions-Section 3, Vol. 97, 1988, pp. 282-293, SAE 880187.
[13] Bohac, S. V., Barker, D. M., and Assanis, D. N., “ A Global Model for Steady State and Transient S.I. Engine Heat Transfer Studies,” Journal of Engines, SAE Transactions-Section 3, Vol. 105, 1996, pp. 196-214, SAE 960073.
[14] Fiveland, S. B. and Assanis, D. N., “A Four-Stroke Homogeneous Charge Compression Ignition Engine Simulation for Combustion and Performance Studies,” Journal of Engines, SAE Transactions-Section 3, Vol. 109, 2000, pp. 452-468, SAE 2000-01-0332.
[15] Shiozawa, T., Nakanishi, A., Ozawa, T., and Oki, T., “Thermal Air Flow Analysis of an Automotive Headlamp-The PIV Measurement and the CFD Simulation by Using a Skeleton Model,” Journal of Passenger Cars: Mechanical Systems, SAE Transactions-Section 6, Vol. 109, 2000, pp. 1098-1104, SAE 2000-01-0802.
[16] Launder, B. E. and Spalding, D. B., Lectures in Mathematical Models of Turbulence, London , New York: Academic Press, 1972.
[17] Mitty, T. J., Jameson, A., and Baker, T. J., “Solution of Three-Dimensional Supersonic Flowfields via Adapting Unstructured Meshes,” Computer and Fluids, Vol. 22, No. 2/3, 1993, pp. 271-282.

[18] Pirzadeh, S., “Structured Background Grids for Generation of Unstructured Grids by Advancing-Front Method,” AIAA Journal, Vol. 31, No. 2, 1993. pp.257-265.
[19] Warsi, Z. U. A., “Conservation Form of the Navier-Stokes Equations in General Nonsteady Coordinates,” AIAA Journal, Vol. 19, No. 2, 1981, pp. 240-242.
[20] Versteeg, H. K. and Malalasekera, W., An Introduction to Computational Fluid Dynamics-The Finite Volume Method, Harlow, Essex, England: Longman, 1995.
[21] Patankar, S. V. and Spalding, D. B., “A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional,” Int. J. Heat mass Transfer, Vol. 15, No. 10, 1972, pp. 1787-1806.
[22] Jayatilleka, C. L., “The Influence of Prandtl Number and Surface Roughness on the Resistance of the Laminar Sub-Layer to Momentum and Heat Transfer,” Progress in Heat and Mass Transfer, Vol. 1, Pergamon Press Inc., 1969, pp. 193-329.

無法下載圖示 全文公開日期 2011/06/22 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE