簡易檢索 / 詳目顯示

研究生: 許育誠
Yu-Cheng Hsu
論文名稱: 垂直跳躍機器人設計與實現
Design and Implementation of a Vertical Jumping Robot
指導教授: 林紀穎
Chi-Ying Lin
口試委員: 劉孟昆
Meng-Kun Liu
藍振洋
Chen-yang Lan
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 113
中文關鍵詞: 跳躍機器人上牆能力仿生式抓握准直驅致動器
外文關鍵詞: Jumping robot, Quasi-Direct Drive, wall climbing ability, bio-inspired grasping action
相關次數: 點閱:182下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 跳躍是目前自然界中許多生物用來高效率移動及躲避天敵的運動行為,其具有敏捷度高和突發性的爆發力的特點使的近年來許多研究學者開始以仿生角度設計跳躍機器人,用於學術理論的探討及實際複雜地形的越障應用,本研究發想若能將跳躍機器人的應用與攀爬機器人結合,便可能使攀爬機器人能夠在自身長度無法到達的垂直段差環境之間進行移動,因而衍伸出垂直跳躍上牆步態的想法。目前本實驗室針對臺灣建築外牆特徵所開發之攀爬機器人已有各式的運動步態完成開發,主要以橫向抓枝與飛躍抓枝兩種具代表性的運動方式進行機器人設計與實作探討,透過觀察靈長類動物在樹林間的擺盪飛躍行為,開發具有多種空中運動步態的抓枝機器人,探討用於高空作業或是救災任務的可行性,然而,既有攀爬機器人研究均著重於探討壁面之間的運動行為,由地面運動至壁面之間的跳躍上牆步態至今仍乏人問津,因此為了使仿生機器人能更靈活的運用於高空作業及救災,本研究特別設計了由地面跳躍至空中抓握桿件的垂直跳躍上牆運動步態,其靈感來自於鶴鴕(Cassowary)的特殊跳躍覓食行為,從仿生角度可將步態拆分成四個運動階段:儲能階段、起跳階段、重心轉換階段、降落階段,本研究藉由模擬分析在各階段間不同操作參數與切換條件下對於後續運動階段之動態影響,並以直流無刷馬達可以實現虛擬阻抗控制的特性,結合准直接驅動(QDD)的致動器設計來進行運動規劃,使機器人能順利轉換各運動階段並完成垂直跳躍上牆步態。為了瞭解本研究機器人與既有跳躍機器人的跳躍性能差異,本研究特別對同樣使用直流無刷馬達作為關節致動器的既有跳躍機器人文獻進行統整比較,並利用能量轉換效率指標(Cost of Transport)及垂直跳躍敏捷度(Vertical jumping agility)來比較分析本研究與其他研究之跳躍性能差異,最後的實驗結果顯示本研究機器人能夠跳躍至0.34 m的高度且在COT為2.72時能有1.7 (m/s)的跳躍敏捷度,同時可以順利的完成上牆步態之抓握。


    Jumping is a locomotion style that numerous animal livings in nature adopt to improve moving efficiency and avoid predators. The high agility and sudden explosive force of this locomotion have led many researchers in recent years to design jumping robots from a biomimetic perspective for academic exploration and practical applications used in complex terrains. This study proposes the idea of combining the application of jumping robots with climbing robots, which can greatly enhance the vertical moving ability for climbing robots. To enable the climbing robots adapt the features of the exterior wall in Taiwan’s buildings for transverse movement various locomotion styles have been developed recently. The design and implementation of these robots focus mainly on two motion modes: continuous transverse brachiation and ricochetal transverse brachiation. By observing the swinging and leaping behavior of athletic players, a number of ledge-grasping robots with multiple locomotion gatis are developed to explore its feasibility for high-altitude operations or disaster relief missions. However, most existing relevant research only focuses on the robot movements on the walls, very little attention has been given to transferring the robot from the ground to the wall for the succeeding movements like brachiation. This research proposes a vertical jumping locomotion pattern from the ground to grasping bars in the air, inspired by the unique jumping and foraging behavior of “flightless birds”, cassowaries. From a biomimetic perspective, this locomotion pattern can be divided into four phases: squat phase, launch phase, transition phase, and landing Phase. The study first uses simulation analysis to investigate the dynamic effects on subsequent motion phases under different operating parameters and switching conditions between phases. The joint motion trajectories required for the proposed locomotion are integrated with virtual impedance control algorithms realized by BLDC motors. The use of Quasi-Direct-Drive (QDD) actuators also helps the implementation of smooth transition between motion phases and realization of vertical jumping and bar grasping. To understand the jumping performance difference between this research and existing jumping robots, this study specifically compares the existing literature that also uses BLDC motors as joint actuators. The indicators including Cost of Transport (COT) and vertical jumping agility are used to conduct performance comparison. The experimental results show that the robot presented in this research was able to jump to a height of 0.34 m and had a jumping agility of 1.7 (m/s) at a COT of 2.72. The designed robot was also able to successfully grasp the target bar hanging in the air after jumping, just like the locomotion of cassowaries.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第1章 緒論 1 1.1 前言 1 1.2 研究動機與文獻回顧 7 1.3 本文貢獻與架構 19 第2章 系統運動步態規劃與參數設計 21 2.1 垂直跳躍動作流程分析與設計 21 2.1.1 垂直跳躍運動步態 21 2.1.2 機器人步態設計 22 2.2 系統架構需求 24 2.3 系統參數設計 25 第3章 系統架構 27 3.1 機構設計 29 3.1.1 腿部機構設計 30 3.1.2 足部末端點止滑設計 31 3.2 機器人系統設計 32 3.2.1 系統微控制器(MCU) 35 3.2.2 致動器 36 3.2.3 直流無刷馬達驅動模組 (ODrive) 38 3.2.4 監測裝置 40 3.2.5 感測器 42 3.2.6 通訊裝置 45 第4章 直流無刷馬達驅動演算法 46 4.1 無刷馬達常見換向技術 47 4.1.1 六步方波 47 4.1.2 弦波 47 4.1.3 磁場定向控制(FOC) 48 4.2 直流無刷馬達動態模型 49 4.3 磁場定向控制(FOC)演算法實現 54 4.3.1 Clarke轉換 55 4.3.2 Park轉換 56 4.3.3 Inverse Park轉換 57 4.3.4 SVPWM 57 第5章 系統動態模擬 63 5.1 多體機構動態模擬建模 64 5.1.1 定義環境參數 64 5.1.2 建立物理模型 65 5.1.3 軸角/關節定義 65 5.1.4 關節致動 66 5.1.5 碰撞模型 66 5.1.6 感測器 67 5.1.7 動畫輸出 68 5.2 垂直跳躍上牆步態軌跡設計與切換條件選用 69 5.3 虛擬模型控制VMC 77 第6章 實驗結果與討論 79 6.1 實驗架設 79 6.2 虛擬順應性實驗(VMC) 80 6.3 垂直跳躍實驗 82 6.4 垂直跳躍敏捷度實驗 88 6.5 能量轉換效率指標(Cost of Transport) 91 第7章 結論與未來目標 92 7.1 結論 92 7.2 未來目標 92 參考文獻 94

    [1] Alexander R M N. Principles of animal locomotion. Princeton, USA: Princeton University Press, 2003.
    [2] Siegwart R, Nourbakhsh I R. Introduction to autonomous mobile robots. Cambridge, USA: MIT Press, 2004.
    [3] James R S, Navas C A, Herrel A. How important are skeletal muscle mechanics in setting limits on jumping performance. The Journal of Experimental Biology, 2007, 210(6): 923-933.
    [4] Alexander R M. Leg design and jumping technique for humans, other vertebrates and insects. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 1995, 347(1321): 235-248.
    [5] Bennet-Clark H C, Lucey E C A. The jump of the flea: A study of the energetics and a model of the mechanism[J]. The Journal of Experimental Biology, 1967, 47(1): 59-76.
    [6] Patek S N, Nowroozi B N, Baio J E, et al. Linkage mechanics and power amplification of the mantis shrimp’s strike[J]. The Journal of Experimental Biology, 2007, 210(20): 3677-3688.
    [7] Shen-An Chen,Ting-Jen Yeh.Analysis and Implementation of a One-Legged Hopping Robot, National Tsing Hua University,2007.
    [8] E. Ambrose and A. D. Ames, “Improved Performance on Moving-Mass Hopping Robots with Parallel Elasticity,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France: IEEE, May 2020, pp. 2457–2463. doi: 10.1109/ICRA40945.2020.9197070.
    [9] E. Ambrose, N. Csomay-Shanklin, Y. Or, and A. Ames, “Design and Comparative Analysis of 1D Hopping Robots,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China: IEEE, Nov. 2019, pp. 5717–5724. doi: 10.1109/IROS40897.2019.8967692.
    [10]Y. Ding and H.-W. Park, “Design and experimental implementation of a quasi-direct-drive leg for optimized jumping,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC: IEEE, Sep. 2017, pp. 300–305. doi: 10.1109/IROS.2017.8202172.
    [11]A. De and D. E. Koditschek, ‘The Penn Jerboa: a platform for exploring parallel composition of templates,’ 2015.
    [12]胡婷鈞,「可於壁面凸塊進行橫向攀爬之抓枝機器人設計與運動控制策略研究」, 國立臺灣科技大學機械系碩士論文,2018.
    [13]楊宗翰,「橫向飛躍抓枝機器人之設計改良與運動控制研究」, 國立臺灣科技大學機械系碩士論文,2018.
    [14]田詠傑,「橫向抓枝機器人之設計與實作」, 國立臺灣科技大學機械系碩士論文,2019.
    [15]陳振偉,「具多種運動步態之仿生式橫向抓枝機器人設計與實現」, 國立臺灣科技大學機械工系碩士論文,2020.
    [16]羅威竣,「參考壁面凸桿攀爬者運動步態之橫向抓枝機器人設計與實現」, 國立臺灣科技大學機械系碩士論文,2021.
    [17]李哲銘,「參考運動員攀登行為之橫向凸桿抓枝機器人運動步態設計與實現」, 國立臺灣科技大學機械系碩士論文,2022.
    [18]鶴鴕垂直跳躍移動過程, 檢自 https://www.facebook.com/watch/?v=10160194350255411
    [19]D. W. Haldane, M. M. Plecnik, J. K. Yim, and R. S. Fearing, “Robotic vertical jumping agility via series-elastic power modulation,” Sci. Robot., vol. 1, no. 1, p. eaag2048, Dec. 2016, doi: 10.1126/scirobotics.aag2048.
    [20]R. Niiyama, A. Nagakubo, and Y. Kuniyoshi, “Mowgli: A Bipedal Jumping and Landing Robot with an Artificial Musculoskeletal System,” in Proceedings 2007 IEEE International Conference on Robotics and Automation, Rome, Italy: IEEE, Apr. 2007, pp. 2546–2551. doi: 10.1109/ROBOT.2007.363848.
    [21]K. Graichen, S. Hentzelt, A. Hildebrandt, N. Kärcher, N. Gaißert, and E. Knubben, “Control design for a bionic kangaroo,” Control Eng. Pract., vol. 42, pp. 106–117, Sep. 2015, doi: 10.1016/j.conengprac.2015.05.005.
    [22]G.-P. Jung et al., “JumpRoACH: A Trajectory-Adjustable Integrated Jumping–Crawling Robot,” IEEEASME Trans. Mechatron., vol. 24, no. 3, pp. 947–958, Jun. 2019, doi: 10.1109/TMECH.2019.2907743.
    [23]J. Zhao, T. Zhao, N. Xi, M. W. Mutka, and L. Xiao, “MSU Tailbot: Controlling Aerial Maneuver of a Miniature-Tailed Jumping Robot,” IEEEASME Trans. Mechatron., vol. 20, no. 6, pp. 2903–2914, Dec. 2015, doi: 10.1109/TMECH.2015.2411513.
    [24]M. Kovac, M. Fuchs, A. Guignard, J.-C. Zufferey, and D. Floreano, “A miniature 7g jumping robot,” in 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA: IEEE, May 2008, pp. 373–378. doi: 10.1109/ROBOT.2008.4543236.
    [25]J. Zhang, X. Yang, G. Song, Y. Zhang, S. Fei, and A. Song, “Structural-Parameter-Based Jumping-Height-and-Distance Adjustment and Obstacle Sensing of a Bio-Inspired Jumping Robot,” Int. J. Adv. Robot. Syst., vol. 12, no. 6, p. 66, Jun. 2015, doi: 10.5772/60579.
    [26]S. Divi et al., “Latch-based control of energy output in spring actuated systems,” J. R. Soc. Interface, vol. 17, no. 168, p. 20200070, Jul. 2020, doi: 10.1098/rsif.2020.0070.
    [27]G. Kenneally, A. De, and D. E. Koditschek, “Design Principles for a Family of Direct-Drive Legged Robots,” IEEE Robot. Autom. Lett., vol. 1, no. 2, pp. 900–907, Jul. 2016, doi: 10.1109/LRA.2016.2528294.
    [28]N. Kau, A. Schultz, N. Ferrante, and P. Slade, “Stanford Doggo: An Open-Source, Quasi-Direct-Drive Quadruped,” in 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada: IEEE, May 2019, pp. 6309–6315. doi: 10.1109/ICRA.2019.8794436.
    [29]D. W. Haldane, J. K. Yim, and R. S. Fearing, “Repetitive extreme-acceleration (14-g) spatial jumping with Salto-1P,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC: IEEE, Sep. 2017, pp. 3345–3351. doi: 10.1109/IROS.2017.8206172.
    [30]B. Katz, J. D. Carlo, and S. Kim, “Mini Cheetah: A Platform for Pushing the Limits of Dynamic Quadruped Control,” in 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada: IEEE, May 2019, pp. 6295–6301. doi: 10.1109/ICRA.2019.8793865.
    [31]G.-H. Liu, H.-Y. Lin, H.-Y. Lin, S.-T. Chen, and P.-C. Lin, “A Bio-Inspired Hopping Kangaroo Robot with an Active Tail,” J. Bionic Eng., vol. 11, no. 4, pp. 541–555, Dec. 2014, doi: 10.1016/S1672-6529(14)60066-4.
    [32]J.-S. Koh, S.-P. Jung, M. Noh, S.-W. Kim, and K.-J. Cho, “Flea inspired catapult mechanism with active energy storage and release for small scale jumping robot,” in 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany: IEEE, May 2013, pp. 26–31. doi: 10.1109/ICRA.2013.6630552.
    [33]鶴鴕垂直跳躍運動步態, 檢自 https://www.youtube.com/watch?v=JpgLCcTQsM0&t=1s
    [34]Charuta A., Dzierzęcka M., Reymond J., MańkowskaPliszka H.: Morphology and morphometry of the limb girdle and the part of the pelvis limb of the ostrich. Med Weter 2007, 63, 1090-1094.
    [35]RTV #202 模型用矽橡膠,檢自 https://shop.dechemical.com.tw/product.php?pid_for_show=4515
    [36]Teensy4.1 Discovery Board,檢自 https://www.pjrc.com/store/teensy41.html
    [37]T Motor MN5212,檢自https://store.tmotor.com/goods.php?id=377
    [38]BLS-HV7146MG, 檢自https://www.amazon.com/BLS-HV7146MG-Brushless-Precision-Digital-Helicopter/dp/B087JP2BX4
    [39]ODrive V3.6,檢自 https://odriverobotics.com/
    [40]ODrive 電路設計圖,檢自 https://github.com/odriverobotics/ODriveHardware/blob/master/v3/v3.5docs/schematic_v3.5.pdf
    [41]DSN-VC288,檢自https://24h.pchome.com.tw/prod/DEACFH-A9009AX0W?gclid=CjwKCAjw1YCkBhAOEiwA5aN4ATt6_XmrmP32EDuBY_JfVBndw2sW6QDnChPA1XVrXgIw6nZ--1bqIBoCtSkQAvD_BwE
    [42]DSN-VC288電路圖,檢自 https://github.com/Upcycle-Electronics/DSN-VC288/blob/master/PDF's/V2.0%20DSN-VC288.pdf
    [43]LCD 1602,檢自
    https://www.digikey.tw/zh/products/detail/orient-display/AMC1602GR-B-B6WTDW/12089217?utm_adgroup=General&utm_source=google&utm_medium=cpc&utm_campaign=PMax%20Shopping_Product_Middle%20ROAS&utm_term=&productid=12089217&gclid=Cj0KCQjwqs6lBhCxARIsAG8YcDhs_SSct9yTDjKlbXJA2tiKddmx5q4w6bS-wDgUCHbANypl7HyvXEkaAo9sEALw_wcB
    [44]JY901B,檢自https://detail.tmall.com/item.htm?_u=h3ttmek6d90f&id=598629159959&spm=a1z09.2.0.0.41ec2e8dztpdmt
    [45]AS5600,檢自 chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://ams.com/documents/20143/36005/AS5600_DS000365_5-00.pdf
    [46]AS5047P,檢自 chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://ams.com/documents/20143/36005/AS5047P_DS000324_3-00.pdf
    [47]HC-05 藍芽模組, 檢自 https://jin-hua.com.tw/webc/html/product/show.aspx?num=21804
    [48]BLDC Motor Control,檢自 https://www.mathworks.com/videos/motor-control-part-2-bldc-motor-control-1567761327790.html
    [49]卓淑婷,「直流無刷馬達無感測驅動之分析」, 國立交通大學電機與控制工程學系碩士論文,2009.
    [50]Microsemi. ‘Park, Inverse Park and Clarke, Inverse Clarke Transformations MSS Software Implementation User Guide.’ [Online]. Available: http://www.microsemi.com/documentportal/doc_view/132799-park-inverse-park-and-clarke-inverse-clarke-transformations-msssoftware-implementation-user-guide.
    [51]FOC座標轉換運算,檢自.http://blog.udn.com/hal9678/6714863
    [52]SVPWM工作原理,檢自. https://blog.udn.com/hal9678/6714411
    [53]J. Pratt, C.M. Chew, A. Torres, P. Dilworth, G. Pratt. ‘ Virtual Model Control: An Intuitive Approach for Bipedal Locomotion.’ The International Journal of Robotics Research Vol. 20, No. 2, February 2001, pp. 129-143.
    [54]ATI Axia-80 M20六軸力量感測器,檢自 https://www.ati-ia.com/products/ft/ft_models.aspx?id=Axia80-M20
    [55]J. Duperret, G. Kenneally, J. Pusey, and D. Koditschek, ‘Towards a Comparative Measure for Legged Agility’.
    [56]H.-W. Park, P. Wensing, and S. Kim, ‘Online Planning for Autonomous Running Jumps Over Obstacles in High-Speed Quadrupeds,’ in Robotics: Science and Systems XI, Robotics: Science and Systems Foundation, Jul. 2015. doi: 10.15607/RSS.2015.XI.047.

    無法下載圖示 全文公開日期 2025/08/28 (校內網路)
    全文公開日期 2028/08/28 (校外網路)
    全文公開日期 2028/08/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE