簡易檢索 / 詳目顯示

研究生: 蕭雅滋
Ya-Tzu Hsiao
論文名稱: 極化光在具主動式聲光透鏡之可切換平面/立體影像顯示裝置的研究
Polarized light in 2D/3D Switchable Autostereoscopic Display System Using Active Acousto-Optic Lens
指導教授: 譚昌文
Chen-wen Tarn
口試委員: 范慶麟
none
陳鴻興
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 52
中文關鍵詞: 平面/立體可切換顯示器裸眼立體顯示器聲光透鏡極化光
外文關鍵詞: 2D/3D switchable display, Autostereoscopic display, Acousto-optic lens, Polarized light
相關次數: 點閱:219下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文所提出的研究是利用聲光效應(Acousto-Optic Effect)之傳遞函數及傅立葉光學(Fourier Optics)作為數學模型基礎,模擬分析輸入光在不同極化狀態下,對2D/3D可切換模式的裸眼立體顯示器的特性參數的影響;其中2D/3D可切換模式的裸眼立體顯示器,是利用聲光透鏡(Acousto-Optic Lens)所構成的光學元件,其工作原理是當聲波在聲光晶體中傳播,晶體介質折射率會產生周期性變化形成光柵,當輸入光符合布拉格條件(Bragg Condition)時,輸出光特性如同一主動式柱狀透鏡或陣列,利用此聲光效應的特點可即時調整透鏡焦距,優點包括觀賞距離較彈性,能提供舒適的立體感知等,故選用此光學元件2D/3D可切換模式的裸眼立體顯示器研究。


    In this paper, we propose the performance of a 2D/3D Switchable Autostereoscopic Display System with an input light source with different kind of polarizations. An acousto-optic lens with an implicit expression of its optical transfer function is employed in the 2D/3D Switchable Autostereoscopic Display System. Various performance results, the light intensity pattern, the crosstalk ratio and the IPD range are studied for light of different polarization. It is proved that using an acousto-optic lens, we can change its focal length in real time, have more flexibility in viewing distance, and also have comfortable three-dimensional perception.

    摘 要 I Abstract II 致 謝 III 目 錄 IV 圖索引 VI 表索引 VIII 第一章 緒論 1 1.1研究動機 1 1.2 研究方法 1 1.3 論文大綱 2 第二章 可切換平面/立體影像顯示裝置 3 2.1 立體視覺之基本原理 3 2.2 立體顯示器介紹 9 2.3 影像相關術語定義 15 2.4主動式聲光透鏡裸眼立體顯示器架構 19 2.5 主動式聲光透鏡分析 19 2.5.1 主動式聲光透鏡折射率 20 2.5.2主動式聲光透鏡焦距與間距 24 2.5.3即時可切換2D/3D模式和螢幕可翻轉特性 26 2.5.4裸眼立體顯示器觀賞距離 28 2.6 結語 29 第三章 光學模擬之數學理論 30 3.1極化光的種類 30 3.2 聲光效應 31 3.2.1聲光對光場的影響 32 3.2.2聲光透鏡之傳遞函數 33 3.3傅立葉光學函數定義 36 3.4 模擬範例 40 第四章 結論與未來展望 47 4.1 結論 47 4.2 未來展望 47 參考文獻 48

    [1] T. Okoshi, Three-Dimensional Imaging Techniques 2nd ed., Atara Press, 2011.
    [2] M. Mehrabi, E.M. Peek, B.C. Wuensche and C. Lutteroth, “Making 3D work: A classification of visual depth cues, 3D display technologies and their applications,” in Proceedings of 14th Australasian User Interface Conference (ACS, 2013), pp. 91-100.
    [3] P. Lebreton, A. Raake, M. Barkowsky, and P. Le Callet, “Evaluating depth perception of 3D stereoscopic videos,” IEEE J. Sel. Top. Signal Process. 6, 710-720 (2012).
    [4] E. Wickelgren, “Section 3: Size & Movement,” http://www.csus.edu/indiv /w /wickelgren/ psyc103/ClassSizeMovement.html.
    [5] K.M. Steele, “Psychology 3215 Perception - Spring 2014,” http://www1. appstate.edu/~kms/classes/psy3215/Topics/3215topics_S14.html.
    [6] C.D. Wickens, J.G. Hollands, R. Parasuraman, and S. Banbury, Engineering Psychology and Human Performance 4th ed., Pearson, 2012.
    [7] W. Robitza, “3D vision: Technologies and applications,” http://slhck.info/ documents/robitza-3d-vision.pdf.
    [8] S. Reichelt, R. Haussler, G. Futterer, and N. Leister, “Depth cues in human visual perception and their realization in 3D displays,” Proc. SPIE 7690, 76900B:1-12 (2010).
    [9] T. Motoki, H. Isono, and I. Yuyama, “Present status of three-dimensional television research,” Proc. IEEE 83, 1009-1021 (1995).
    [10] C.N. de Boer, R. Verleur, A. Heuvelman, and I. Heynderickx, “Added value of an autostereoscopic multiview 3-D display for advertising in a public environment,” Displays 31, 1-8 (2010).
    [11] M. Brain, “How 3-D glasses work,” http://science.howstuffworks.com/3-d- glasses2.htm (2011).
    [12] CEA, “Command-driven analog IR-synchronized active eyewear,” http:// www.ce.org/Standards/Standard-Listings/R4-Video-Systems-Committee/CEA-2038.aspx.
    [13] N. Holliman, 3D Display Systems, Tech. Rep., Dept. Comput. Sci., Univ. Durham (Durham, U.K., 2002).
    [14] K. Jung, J.-L. Park, and B.-U. Choi, “Interactive auto-stereoscopic display with efficient and flexible interleaving,” Opt. Eng. 51, 027402:1-12 (2012).
    [15] Y. Takaki, O. Yokoyama, and G. Hamagishi, “Flat panel display with slanted pixel arrangement for 16-view display,” Proc. SPIE 7237, 723708:1-8 (2009).
    [16] A. Boev, M. Georgiev, A. Gotchev, and K. Egiazarian, “Optimized single-viewer mode of multiview autostereoscopic display,” in Proceedings of the 16th European Signal Processing Conference (EUSIPCO, 2008), pp. 1-5.
    [17] J. Schultz and B. Haldin, “Market evolution and demand for optical films,” Inf. Display 27, 14-17 (2011).
    [18] K.-W. Chien and H.-P. D. Shieh, “Time-multiplexed three-dimensional displays based on directional backlights with fast-switching liquid-crystal displays,” Appl. Opt. 45, 3106-3110 (2006).
    [19] T. Grossman, D. Wigdor, and R. Balakrishnan, “Multi-finger gestural interaction with 3D volumetric displays,” in Proceedings of the 17th annual ACM symposium on user interface software and technology (ACM, 2004), pp. 61-70.
    [20] K. Akeley, “Light-field display,” US Patent No. 8,416,289 B2 (2013).
    [21] Y. Ruigang, “Toward the light field display: Autostereoscopic rendering via a cluster of projectors,” IEEE Trans. Vis. Comput. Graph. 14, 84-96 (2008).
    [22] N.A. Dodgso, “Variation and extrema of human interpupillary distance,” Proc. SPIE 5291, 36-46 (2004).
    [23] W.A. Ijsselsteijn, P.J.H. Seuntiëns, and L. M. J. Meesters, “Chapter 12: Human Factors of 3D Displays,” in Handbook of 3D Videocommunication, O. Schreer, P. Kauff, and T. Sikora, eds. (John Wiley & Sons, Ltd, 2006), pp. 217-233.
    [24] 胡正中,擺脫裸眼式觀賞視角/價格桎梏柱狀凸透鏡3D技術嶄露鋒芒,新電子科技雜誌,第280期,2009年7月。
    [25] A.J. Woods, “Crosstalk in stereoscopic displays: A review,” J. Electron. Imaging 21, 040902:1-21 (2012).
    [26] A.J. Woods, “How are crosstalk and ghosting defined in the stereoscopic literature?,” Proc. SPIE 7683, 78630Z:1-12 (2011).
    [27] A.J. Woods, “Understanding crosstalk in stereoscopic displays,” in Proceedings of 3D Syst. Appl. Conf. (3DSA), (2010), pp.19-21.
    [28] W. Mphepo, Y.-P. Huang, and H.-P. D. Shieh, “Enhancing the brightness of parallax barrier based 3D flat panel mobile displays without compromising power consumption,” J. Disp. Technol. 6, 60-64 (2010).
    [29] Semiconductor Equipment and Materials International (SEMI.org), “New standard: 3D display terminology,” http://www.semi.org/ch/.
    [30] C.-Y. Chiang, K.-T. Chen, Y.-C. Chang, and Y.-P. Huang, “54.2: The effect of crosstalk for stereoscopic 3D dynamic moving images,” SID Inf. Display 40, 808-811 (2009).
    [31] R. Fukushima, K. Taira, T. Saishu, Y. Momonoi, M. Kashiwagi, and Y. Hirayama, “Effect of light ray overlap between neighboring parallax images in autostereoscopic 3D displays,” Proc. SPIE 7237, 72370W: 1-12 (2009).
    [32] A. Boev and A. Gotchev, “Comparative study of autostereoscopic displays for mobile devices,” Proc. SPIE 7881, 78810B: 1-12 (2011).
    [33] F.L. Kooi and A. Toet, “Visual comfort of binocular and 3D displays,” Displays 25, 99-108 (2004).
    [34] 黃乙白,Crosstalk對動態立體影像影響之人因評估,國立交通大學碩士論文,2009年4月。
    [35] C. Schor, “Chapter 5: Binocular Vision,” in Handbook of Seeing, K. D. V. Karen, ed. (Academic Press, 2000), pp. 177-257.
    [36] 陳怡如,主動式聲光透鏡應用於可切換平面/立體影響之裸眼顯示裝置,國立臺灣科技大學博士論文,2015年12月。
    [37] N.J. Berg and J.N. Lee, Acousto-optic signal processing: theory and implementation, M. Dekker, New York, 1983.
    [38] S.K. Yao, D. Weid, and R.M. Montgomery, “Guided acoustic traveling wave lens for high-speed optical scanners,” Appl. Opt. 18 (4) (1979) 446-453.
    [39] L.C. Foster, “High-resolution linear optical scanning system with traveling wave acoustic lens”, U.S. Pattern 3,676,592 A.
    [40] E. Hecht, Optics 4th ed., Addison-Wesley, MA, 2002.
    [41] M. Gotlieb, C.L.M. Ireland, and J.M. Lay, Electro-optic and acousto-optic scanning and deflection, M. Dekker, New York, 1983.
    [42] J. Xu and R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications, Wiley, New York, 1992.
    [43] A. Korpel, Acousto-optics, M. Dekker, New York, 1988.
    [44] A.K Ghatak and K. Thyagarajan, Optical Electronics, Cambridge University Press, 1989.
    [45] 江月松,光電技術,新文京開發,2005年。
    [46] D. Vatansever, E. Siores, and T. Shah, Alternative Resources for Renewable Energy: Piezoelectric and Photovoltaic Smart Structures, In Tech ¬- Open Access Publisher, Croatia, pp.263-268, 2012.
    [47] K. Tammi, “Physical principles of sensing Piezoelectric sensing,” https://wiki.metropolia.fi/ display/sensor/Piezoelectric+sensing. (2014).
    [48] Q.H. Wang, A.H. Wang, W.X. Zhao, Y.H. Tao, and D.H. Li, “Autostereoscopic display based on multi-layer lenticular lens,” Optik 122 (15) (2011) 1326-1328.
    [49] Y.Y. Kao, Y.P. Huang, K.X. Yang, P.C.P. Chao, C.C. Tsai, and C.N. Mo, “An auto-stereoscopic 3D display using tunable liquid crystal lens array that mimics effects of GRIN lenticular lens array,” SID Symposium Digest of Technical Papers 40, 111–114 (2009).
    [50] W.J. Tam, F. Speranza, S. Yano, K. Shimono, and H. Ono, “Stereoscopic 3D-TV: visual comfort,” IEEE Trans. Broadcast. 57 (2011) 335-346.
    [51] W. Chen, J. Fournier, M. Barkowsky, and P. Le Callet, “New requirements of subjective video quality assessment methodologies for 3DTV,” in Proceedings of 5th Int. Workshop Video Processing and Quality Metrics (VPQM, 2010).
    [52] S.Huard, Polarization of Light, Wiley, New York, 1997.
    [53] B. e. a. saleh and m. c. teach, fundamentals of photonics, Wiley, 1991.
    [54] A. Ghatak and K. Thyagarajan, Optical Electronics, Cambridge U. Press, Cambridge, 1989.
    [55] R.F. Harrington, Time-Harmonic Electromagnetic Field, McGraw-Hill, New York, 1961.
    [56] G. S. Kino, Acoustic Waves: Devices, Imaging, and Analog Signal Processing, Prentice-Hall, Englewood Cliffs, N.J., 1987.
    [57] M. J. P. Musgrave, Crystal Acoustics, Holden-Day, San Francisco, 1970.
    [58] C. Tarn, "Spatial Fourier transform approach to the study of polarization changing and beam profile deformation of light during Bragg acousto-optic interaction with longitudinal and shear ultrasonic waves in isotropic media," J. Opt. Soc. Am. A 14, 2231-2242 (1997).
    [59] D.G. Voelz, Computational Fourier Optics: A MATLAB Tutorial, SPIE Press, Bellingham, 2011.
    [60] J.W. Goodman, Introduction to Fourier Optics 3rd ed. Roberts & Co Publishers, 2005.
    [61] H. Yang, J.W.M. Bergmans, T.C.W. Schenk, J.-P.M.G. Linnartz, and R. Rietman, An analytical model for the illuminance distribution of a power LED, Opt. Express 16 (26) (2008) 21641-21646.
    [62] Z. Yixin and T. Chunkan, “Wavefront dislocations of Gaussian beams nesting optical vortices in a turbulent atmosphere,” Chin. Opt. Lett. 2, 559-561 (2004).
    [63] A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation, Wiley, N.J., 1984.
    [64] I.C. Chang, Acousto-optic devices and applications, IEEE Trans. Sonics Ultrason, 1976.
    [65] C. Joram, “Transmission curves of plexiglass (PMMA) and optical grease,” http://cdsweb.cern.ch/record/1214725/files/PH-EP-Tech-Note-2009-003.pdf. (October 26, 2009).
    [66] Boston Piezo-Optics Inc., “An introduction to piezoelectric transducer crystals,” http://bostonpiezooptics.com/intro-to-transducer-crystals.

    無法下載圖示 全文公開日期 2021/08/10 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE