簡易檢索 / 詳目顯示

研究生: 莊皓文
Hao-Wen Chuang
論文名稱: 在以鄰近為基礎的行動社交網路下實現具有隱私保護的分散式信譽系統
A Privacy-Preserving Distributed Reputation System {for} Proximity-based Mobile Social Networks
指導教授: 鄭欣明
Shin-Ming Cheng
口試委員: 陳秋華
Chyou-hwa Chen
金台齡
Tai-Lin Chin
張世豪
Shih-Hao Chang
鄭博仁
Albert B. Jeng
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 41
中文關鍵詞: 以鄰近為基礎的行動社交網路信譽系統貝氏定理
外文關鍵詞: Proximity-based Mobile Social Networks, Reputation System, Bayes’ Theorem
相關次數: 點閱:590下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 提供附近用戶新的社交環境是鄰近為基礎的行動社交網路一個重要的服務。鄰近為基礎的行動社交網路讓使用者透過自己的興趣去尋找或認識附近與自己興趣最相符的人。通常都是由手機應用程式的方式來實現,使用者下載手機應用程式填寫使興趣透過藍芽或Wi-Fi 或是後端伺服器的方式去尋找。其中一種方式是使用者(發起者) 將自己的興趣廣播給周圍的使用者,周圍的使用者比對興趣相符的個數和程度傳回給發起者,最後發起者找到與自己興趣相符的朋友。目前鄰近為基礎的行動社交網路存在四個問題,包含激勵問題、隱私問題、信任度問題和配對問題。在本篇論文中,我們要利用信譽系統來解決信任度問題。不過隱私保護和信譽系統的要求是有衝突的。因為在隱私保護上通常是要達到移除相同使用者之間的連結,可是信譽系統是需要長期觀察使用者的行為,因此相同使用者之間的連結在信譽系統是需要的。我們提供一個系統來解決衝突問題以降低使用者之間的連結被惡意使用者知道。最後我們針對目前常見的攻擊進行安全分析,利用ns2 模擬平台來驗證信譽系統是否精準和能否找出惡意使用者。


    Proximity-based Mobile Social Networks (PMSNs) is a new type of social network
    provides social interaction atmosphere using mobile devices such as smart phone to proximate mobile users nearby. In such application, a user applied wireless communication technology (Bluetooth or Wi-Fi) to make new social interactions with nearby friends. However, PMSNs has trustworthiness issue because PMSNs is an openness system that allows any user to upload information, therefore, a user could
    receive erroneous information. In addition, a user can generate uncertainty information
    or doubt the information of other users. Thus, PMSNs needs a trustworthy
    algorithm to evaluate user’s authorization with protecting his/her privacy issue. In
    this thesis we provide a trust model to solve trustworthiness issue by adopting reputation
    system. However, in general, privacy and reputation systems are conflict. For
    example, a good reputation system requires observing its user in a long–term period
    and we need to know social links between users. Nevertheless, for privacy issue, we
    have to remove links between users that can achieve clacking identity and sensitive
    information. We proposed a protocol that prevents malicious users to know links
    between users and tradeoffs between privacy and reputation system. We utilize this
    protocol to statistics user’s trustworthiness score and find out malicious users. If
    user’s trustworthiness score is lower than defined threshold, this user will be recognized
    as a malicious user. Finally, we conduct simulation using our protocol to
    confirm accuracy of user’s reputation score and find out malicious users.

    Chinese Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 List of Illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1 Reputation System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 RSA Cryptosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 Bayes’ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4 Trust model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1 Direct Trust Calculation . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.2 Indirect Trust Calculation . . . . . . . . . . . . . . . . . . . . . . . . 21 5 System architecture and our proposed protocol . . . . . . . . . . . . . . . . 23 5.1 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 5.2 Our proposed protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.2.1 Registering phase . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.2.2 Requesting and Estimating Phase . . . . . . . . . . . . . . . . 25 5.2.3 Rating Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.2.4 Pseudonym Changing Phase . . . . . . . . . . . . . . . . . . . 27 6 Privacy and security analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.1 Privacy Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.2 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.2.1 Man-in-the-middle Attack . . . . . . . . . . . . . . . . . . . . 28 6.2.2 Replay Attack . . . . . . . . . . . . . . . . . . . . . . . . . . 29 7 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.1 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

    [1] S. Ioannidis, A. Chaintreau, and L. Massoulie, “Optimal and scalable distribution
    of content updates over a mobile social network,” in Proc. IEEE INFOCOM
    2009, pp. 1422–1430, Apr. 2009.
    [2] R. Lu, X. Lin, and X. Shen, “Spring: a social-based privacy-preserving packet
    forwarding protocol for vehicular delay tolerant networks,” in Proc. IEEE INFOCOM
    2010, pp. 1–9, Mar. 2010.
    [3] D. Niyato, P. Wang, W. Saad, and A. Hjorungnes, “Controlled coalitional games
    for cooperative mobile social networks,” IEEE Trans. Veh. Technol., vol. 60,
    pp. 1812–1824, May 2011.
    [4] M. Brereton, P. Roe, M. Foth, J. M. Bunker, and L. Buys, “Designing participation
    in agile ridesharing with mobile social software,” in OZCHI, pp. 257–260,
    Nov. 2009.
    [5] E. Bulut and B. K. Szymanski, “Exploiting friendship relations for efficient
    routing in delay tolerant mobile social networks,” in IEEE Trans. Parallel Distrib.
    Syst., vol. 23, pp. 1–5.
    [6] D. Yang, G. Xue, X. Fang, and J. Tang, “Crowdsourcing to smartphones: incentive
    mechanism design for mobile phone sensing,” in MobiCom 2012, pp. 173–
    184, 2012.
    [7] N. Vastardis and K. Yang, “Mobile social networks: Architectures, social properties,
    and key research challenges,” IEEE Communications Surveys & Tutorials,
    vol. 15, no. 3, pp. 1355–1371, 2013.
    [8] R. Gross and A. Acquisti, “Information revelation and privacy in online social
    networks,” in WPES, pp. 71–80, 2005.
    [9] G. Chen and F. Rahman, “Analyzing privacy designs of mobile social networking
    applications,” in IEEE/IFIP Int. Conf. EUC 2008., vol. 2, pp. 83–88, 2008.
    [10] I. Krontiris, F. C. Freiling, and T. Dimitriou, “Location privacy in urban sensing
    networks: research challenges and directions,” vol. 17, pp. 30–35, Oct. 2010.
    [11] K. P. N. Puttaswamy and B. Y. Zhao, “Preserving privacy in location-based
    mobile social applications,” in Proc. HotMobile 2010, vol. 8, pp. 1–6, 2010.
    [12] K. L. Huang, S. S. Kanhere, and W. Hu, “Are you contributing trustworthy
    data? the case for a reputation system in participatory sensing,” in Proc.
    MSWIM 2010, pp. 14–22, 2010.
    [13] W. Dong, V. Dave, L. Qiu, and Y. Zhang, “Secure friend discovery in mobile
    social networks,” in Proc. IEEE INFOCOM 2011, pp. 1647–1655, Apr. 2011.
    [14] A.-K. Pietilainen, E. Oliver, J. LeBrun, G. Varghese, and C. Diot, “Mobiclique:
    middleware for mobile social networking,” in Conf. SIGCOMM 2009, pp. 49–54,
    Aug. 2009.
    [15] S. Rane, W. Sun, and A. Vetro, “Privacy-preserving approximation of l1 distance
    for multimedia applications,” in IEEE ICME 2010, pp. 492–497, July
    2010.
    [16] X. Liang, X. Li, K. Zhang, R. Lu, X. Lin, and X. Shen, “Fully anonymous
    profile matching in mobile social networks,” vol. 31, pp. 641–655, Sept. 2013.
    [17] M. Li, N. Cao, S. Yu, and W. Lou, “Findu: Privacy-preserving personal profile
    matching in mobile social networks,” in Proc. IEEE INFOCOM 2011, pp. 2435–
    2443, Apr. 2011.
    [18] R. Zhang, Y. Zhang, J. Sun, and G. Yan, “Fine-grained private matching for
    proximity-based mobile social networking,” in Proc. IEEE INFOCOM 2012,
    pp. 1969–1977, Mar. 2012.
    [19] R. Zhang, J. Zhang, Y. Zhang, J. Sun, and G. Yan, “Privacy-preserving profile
    matching for proximity-based mobile social networking,” vol. 31, pp. 656–668,
    Sept. 2013.
    [20] A. Beach, M. Gartrell, and R. Han, “Solutions to security and privacy issues
    in mobile social networking,” in Int. Conf. CSE 2009., vol. 4, pp. 1036–1042,
    Aug. 2009.
    [21] S. Gao, J. Ma, and W. Shi, “TrPF: A trajectory privacy-preserving framework
    for participatory sensing,” IEEE Trans. Inf. Forensics Security, vol. 8, pp. 874–
    887, June 2013.
    [22] P. Kalnis, G. Ghinita, K. Mouratidis, and D. Papadias, “Preventing locationbased
    identity inference in anonymous spatial queries,” IEEE Trans. Knowledge
    Data Eng., vol. 19, no. 12, pp. 1719–1733, 2007.
    [23] B. Gedik and L. Liu, “Protecting location privacy with personalized kanonymity:
    Architecture and algorithms,” IEEE Trans. Mobile Comput., vol. 7,
    no. 1, pp. 1–18, 2008.
    [24] M. Shin, C. Cornelius, D. Peebles, A. Kapadia, D. Kotz, and N. Triandopoulos,
    “Anonysense: A system for anonymous opportunistic sensing,” Pervasive and
    Mobile Comput., vol. 7, no. 1, pp. 16–30, 2011.
    [25] E. D. Cristofaro and C. Soriente, “PEPSI:privacy-enhanced participatory sensing
    infrastructure,” in Proc. ACM WiSec, pp. 23–28, 2011.
    [26] R. Paul, K. Ko, Z. Richard, and F. Eric, “Reputation systems,” CACM, vol. 43,
    pp. 45–48, Dec. 2000.
    [27] Y. mei Liu, S. bao Yang, L. tao Guo, W. ming Chen, and L. min Guo, “A
    distributed trust-based reputation model in P2P system,” in Eighth ACIS Int.
    Conf. SNPD 2007, vol. 1, pp. 294–299, Aug. 2007.
    [28] M. Gupta, P. Judge, and M. Ammar, “A reputation system for peer-to-peer
    networks,” in NOSSDAV, pp. 144–152, 2003.
    [29] S. Buchegger and J.-Y. L. Boudec, “A robust reputation system for p2p
    and mobile ad hoc networks P2P and mobile ad-hoc networks,” http://citeseer.
    ist.psu.edu/, 2004.
    [30] Y. Rebahi, V. E. Mujica-V, and D. Sisalem, “A reputation-based trust mechanism
    for ad hoc networks,” in IEEE ISCC 2005, pp. 37–42, June 2005.
    [31] M. Kinateder and S. Pearson, “A privacy-enhanced peer-to-peer reputation
    system,” in E-Commerce and Web Technologies, pp. 206–215, 2003.
    [32] Y. Wei and Y. He, “A pseudonym changing-based anonymity protocol for P2P
    reputation systems,” in Proc. IEEE ETCS 2009, pp. 975–980, Mar. 2009.
    [33] K. L. Huang, S. S. Kanhere, and W. Hu, “A privacy-preserving reputation
    system for participatory sensing,” in Proc. IEEE LCN 2012, pp. 10–18, Oct.
    2012.
    [34] D. Christin, C. Roskopf, M. Hollick, L. Martucci, and S. Kanhere,
    “IncogniSense: An anonymity-preserving reputation framework for participatory
    sensing applications,” in Proc. IEEE PerCom 2012, pp. 135–143, Mar.
    2012.
    [35] E. Anceaume, G. Guette, P. L. Mazenc, T. Sirvent, and V. V. T. Tong, “Extending
    signatures of reputation,” in Proc. IEEE ICC, pp. 1951–1956, June
    2013.
    [36] A. Ghose, P. G. Ipeirotis, and A. Sundararajan, “Opinion mining using econometrics:
    A case study on reputation systems,” in ACL, vol. 45, p. 416, 2007.
    [37] P. Resnick and R. Zeckhauser, “Trust among strangers in internet transactions:
    Empirical analysis of ebay’s reputation system,” Advances in applied microeconomics,
    vol. 11, pp. 127–157, 2002.
    [38] R.-J. Hwang, F.-F. Su, Y.-S. Yeh, and C.-Y. Chen, “An efficient decryption
    method for rsa cryptosystem,” in in IEEE Int. Conf. AINA 2005., vol. 1,
    pp. 585–590, Mar. 2005.
    [39] T. J. Fagan, “Letter: nomogram for bayes theorem,” The New England journal
    of medicine, vol. 293, no. 5, pp. 257–257, 1975.
    [40] S. Buchegger and J.-Y. L. Boudec, “A robust reputation system for mobile
    ad-hoc networks,” EPFL IC Technical Report IC, 2003.
    41] A. Hinneburg and D. A. Keim, “An efficient approach to clustering in large
    multimedia databases with noise,” in KDD, vol. 98, pp. 58–65, 1998.
    [42] A. H. A. Rahman and Z. A. Zukarnain, “Performance comparison of aodv, dsdv
    and i-dsdv routing protocols in mobile ad hoc networks,” ESJ, vol. 31, no. 4,
    pp. 566–576, 2009.
    [43] N. Aschenbruck, R. Ernst, E. Gerhards-Padilla, and M. Schwamborn, “Bonnmotion:
    a mobility scenario generation and analysis tool,” in ICST, p. 51,
    2010.
    [44] J. Yoon, M. Liu, and B. Noble, “Random waypoint considered harmful,” in
    Proc. IEEE INFOCOM 2003, vol. 2, pp. 1312–1321, Mar. 2003.

    無法下載圖示 全文公開日期 2019/07/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE