簡易檢索 / 詳目顯示

研究生: 簡宜婕
Yi-Chieh Chien
論文名稱: 利用PLAXIS 2D探討地質與材料不確定性於大地工程之問題
Geotechnical Engineering Considering Geological and Material Uncertainties Using PLAXIS 2D
指導教授: 李安叡
An-Jui Li
口試委員: 江承家
Chen-Chia Chiang
黃克紹
Ke-Shao Huang
蔡孟涵
Meng-Han Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 128
中文關鍵詞: 地質與材料不確定性邊坡穩定性開挖工程液化潛能指數隨機場PLAXIS 2D有限元素法
外文關鍵詞: Geological and Material Uncertainties, Slope Stability, Excavation, Liquefaction Potential Index, Random field, PLAXIS 2D, Finite Element Methods
相關次數: 點閱:230下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在大地工程領域中,土壤地質的分佈及材料的組成本身是複雜且為非均勻的,然而,由於施工位置限制、鑽孔資料有限等因素,無法取得完整且全面的參數資料,且工程實務上鮮少探討隨機場對地層模型建立的差異,並將各土層性質假設為均質狀態,以利簡化分析,導致難以準確表示地下空間特徵,從而產生地質與材料不確定性,造成工程上之誤判及偏差。本研究將利用有限元素軟體PLAXIS 2D進行數值模擬分析,以內建之Pytho語言建立隨機場數值模型,並將其應用於邊坡穩定、開挖工程、液化分析等案例進行探討,期望能更加接近真實的材料分佈,為大地工程的設計和分析提供參考,同時也有助於提高大地工程的安全性和可靠性。
本研究中,針對邊坡、開挖案例進行模擬分析及計算液化潛能指數,為了考慮地質與材料不確定性,根據模擬不同大地工程類型,可能造成之破壞面、塑性區、壁體變形、地表沉陷等因素,將土壤之空間變異性納入考量,利用材料輸入條件視為不確定性之隨機參數,估計加入變異係數所產生的影響,進行更全面性的探討。


In the field of geotechnical engineering, the distribution of soil geology and the composition of materials are inherently complex and non-uniform. However, due to constraints in construction locations and limited borehole data, it is not possible to obtain complete and comprehensive parameter data, and in engineering practice, there is a lack of exploration regarding the differences in establishing geological models by random fields, and it is common to assume homogeneity in various soil properties for the purpose of simplifying the analysis. leads to hardly represent an accurate of underground space feature, resulting in geological and material uncertainties that can cause misjudgments and deviations in engineering applications. This study will utilize the finite element software PLAXIS 2D for numerical simulation analysis, it will employ the built-in Python language to establish a numerical random field model and apply it in the investigation of slope stability, excavation engineering, liquefaction analysis, and other case studies. The aim is to achieve a closer approximation to the real distribution of materials, providing references for the design and analysis of geotechnical engineering, and expect to contribute to enhancing the safety and reliability of geotechnical engineering practices.
In this study, simulation analysis are conducted for slope stability, excavation cases, and liquefaction potential index calculations, to account for geological and material uncertainties, various factors that may contribute to failure surfaces, plastic zones, deformation of retaining walls, and surface settlement are simulated for different types of geotechnical projects, the spatial variability of the soil is considered, and materials input conditions are treated as random parameters to estimate the effects caused by incorporating variability coefficients, this comprehensive approach aims to provide a more thorough understanding of the influence of geological and material uncertainties.

目錄 摘要 i Abstract ii 致謝 iv 目錄 v 表目錄 viii 圖目錄 ix 第一章 緒論 1 1.1 研究動機與目的 1 1.2 論文架構 2 第二章 文獻回顧 5 2.1 地質與材料不確定性 5 2.2 邊坡破壞 8 2.2.1 邊坡破壞機制 8 2.2.2 不飽和土壤之特性 10 2.2.3 不飽和土壤水分特徵曲線 11 2.2.4 降雨入滲對邊坡穩定之影響 12 2.3 開挖工程 14 2.3.1 深開挖施工方法 14 2.3.2 深開挖之擋土壁體變形行為 15 2.3.3 深開挖引致之地表沉陷 16 2.4 土壤液化 17 2.4.1 土壤液化之機制 17 2.4.2 土壤液化簡易評估法 18 2.4.3 土壤液化潛能評估 29 第三章 數值分析軟體PLAXIS 2D 31 3.1 PLAXIS 2D簡介 31 3.2 元素模型 32 3.3 土壤材料模式 35 3.3.1 莫爾-庫倫模式(Mohr Coulomb model, MC) 37 3.3.2 應變硬化模式(Hardening Soil model, HS) 42 3.4 強度折減法(Strength Reduction Method, SRM) 47 3.5 PLAXIS Python API 49 第四章 案例研究與結果探討 51 4.1 臺灣貓空纜車T-16塔柱邊坡 51 4.1.1 案例介紹 51 4.1.2 數值模型建置 54 4.1.3 數值分析之土壤參數 57 4.1.4 不考慮地質不確定下的分析結果 59 4.1.5 建立隨機場數值模型及土壤參數 63 4.1.6 考慮地質不確定性的分析結果 67 4.2 台北國家企業中心(TNEC) 73 4.2.1 案例介紹 73 4.2.1 數值模型建置 76 4.2.2 數值分析之土壤及結構參數 78 4.2.3 不考慮地質不確定性的分析結果 81 4.2.4 建立隨機場數值模型及土壤參數 83 4.2.5 考慮地質不確定性的分析結果 86 4.3 液化案例 - 龍門國中 89 4.3.1 案例介紹 89 4.3.2 液化潛能分析程式化建置 90 4.3.3 不考慮地質不確定性的分析結果 95 4.3.4 考慮地質不確定性的分析結果 98 第五章 結論與建議 103 5.1 結論 103 5.2 建議 106 參考文獻 107

參考文獻
1. Clayton, C. R. (2001). Managing geotechnical risk: improving productivity in UK building and construction. Thomas Telford.
2. Fredlund, D. G., Morgenstern, N. R., & Widger, R. A. (1978). The shear strength of unsaturated soils. Canadian geotechnical journal, Vol. 15, No. 3, pp. 313-321.
3. Fredlund, D. G., & Rahardjo, H. (1993). Soil mechanics for unsaturated soils. John Wiley & Sons.
4. Fredlund, D. G., & Xing, A. (1994). Equations for the soil-water characteristic curve. Canadian geotechnical journal, Vol. 31, No. 4, pp. 521-532.
5. USGS, (2004). “Landslide Types and Processes.”
6. Varnes, D. J. (1978). Slope movement types and processes. Special report, 176, 11-33.
7. Krahn, J., & Fredlund, D. G. (1972). On total, matric and osmotic suction. Soil Science, 114(5), 339-348.
8. Bishop, A. W. (1959). The principle of effective stress. Teknisk ukeblad, 39, 859-863.
9. Duncan, J. M. (1999). Use of back analysis to reduce slope failure risk. Civil engineering practice, 14(1), 75-91.
10. Vanapalli, S. K., Fredlund, D. G., & Pufahl, D. E. (1999). The influence of soil structure and stress history on the soil–water characteristics of a compacted till. Géotechnique, 49(2), 143-159.
11. Cai, F., & Ugai, K. (2004). Numerical analysis of rainfall effects on slope stability. International Journal of Geomechanics, 4(2), 69-78.
12. Alonso, E. E., Gens, A., & Josa, A. (1990). A constitutive model for partially saturated soils. Géotechnique, 40(3), 405-430.
13. Cho, S. E. (2014). Probabilistic stability analysis of rainfall-induced landslides considering spatial variability of permeability. Engineering Geology, 171, 11-20.
14. Liu, S. Y., Shao, L. T., & Li, H. J. (2015). Slope stability analysis using the limit equilibrium method and two finite element methods. Computers and Geotechnics, 63, 291-298.
15. Griffiths, D. V., & Lane, P. A. (1999). Slope stability analysis by finite elements. Geotechnique, 49(3), 387-403.
16. Bathe, K. J. (1982). Finite element analysis in engineering analysis. Prentice-Hall.
17. Matsui, T., & San, K. C. (1992). Finite element slope stability analysis by shear strength reduction technique. Soils and foundations, 32(1), 59-70.
18. Ou, C. Y., Liao, J. T., & Lin, H. D. (1998). Performance of diaphragm wall constructed using top-down method. Journal of geotechnical and geoenvironmental engineering, 124(9), 798-808.
19. Ou, C. Y., & Shiau, B. Y. (1998). Analysis of the corner effect on excavation behaviors. Canadian geotechnical journal, 35(3), 532-540.
20. Hsieh, P. G., & Ou, C. Y. (1998). Shape of ground surface settlement profiles caused by excavation. Canadian geotechnical journal, 35(6), 1004-1017.
21. Lim, A., Ou, C. Y., & Hsieh, P. G. (2010). Evaluation of clay constitutive models for analysis of deep excavation under undrained conditions. Journal of GeoEngineering, 5(1), 9-20.
22. Ou, C. Y., & Hsieh, P. G. (2011). A simplified method for predicting ground settlement profiles induced by excavation in soft clay. Computers and Geotechnics, 38(8), 987-997.
23. Hsieh, P. G., & Ou, C. Y. (2018). Mechanism of buttress walls in restraining the wall deflection caused by deep excavation. Tunnelling and Underground Space Technology, 82, 542-553.
24. Clough, G. W. (1990). Construction Induced Movements of Insitu Wall, Design and Performance of Earth Retaining Structure. In ASCE (pp. 439-479).
25. ACI Committee. (2008). Building code requirements for structural concrete (ACI 318-08) and commentary. American Concrete Institute.
26. Seed, H. B., & Idriss, I. M. (1971). Simplified procedure for evaluating soil liquefaction potential. Journal of the Soil Mechanics and Foundations division, 97(9), 1249-1273.
27. Seed, H. B., Idriss, I. M., & Arango, I. (1983). Evaluation of liquefaction potential using field performance data. Journal of geotechnical engineering, 109(3), 458-482.
28. Seed, H. B., Tokimatsu, K., Harder, L. F., & Chung, R. M. (1985). Influence of SPT procedures in soil liquefaction resistance evaluations. Journal of geotechnical engineering, 111(12), 1425-1445.
29. Tokimatsu, K., & Yoshimi, Y. (1983). Empirical correlation of soil liquefaction based on SPT N-value and fines content. Soils and Foundations, 23(4), 56-74.
30. Hwang, J. H., Khoshnevisan, S., Juang, C. H., & Lu, C. C. (2021). Soil liquefaction potential evaluation–An update of the HBF method focusing on research and practice in Taiwan. Engineering Geology, 280, 105926.
31. Robertson, P. K., & Fear, C. E. (1997). Cyclic liquefaction and its evaluation based on the SPT and CPT. In Proceeding of the NCEER workshop on evaluation of liquefaction resistance of soils (pp. 41-87).
32. Youd, T. L., & Idriss, I. M. (2001). Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of geotechnical and geoenvironmental engineering, 127(4), 297-313.
33. Iwasaki, T., Arakawa, T., & Tokida, K. I. (1984). Simplified procedures for assessing soil liquefaction during earthquakes. International Journal of Soil Dynamics and Earthquake Engineering, 3(1), 49-58.
34. Pokhrel, R. M., Kuwano, J., & Tachibana, S. (2013). A kriging method of interpolation used to map liquefaction potential over alluvial ground. Engineering geology, 152(1), 26-37.
35. Brinkgreve, R.B.J., Kumarswamy, S., Swolfs, W.M.(2019). PLAXIS 2019 manual, PLAXIS bv, Delft, Netherlands.
36. Mohr, J., & Nevin, J. R. (1990). Communication strategies in marketing channels: A theoretical perspective. Journal of marketing, 54(4), 36-51.
37. Bowles, J. E. (1992). Engineering properties of soils and their measurement. McGraw-Hill, Inc.
38. Van Genuchten, M. T. (1980). A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil science society of America journal, 44(5), 892-898.
39. Terzaghi, K. V. (1936). The shearing resistance of saturated soils and the angle between the planes of shear. In First international conference on soil Mechanics, 1936 (Vol. 1, pp. 54-59).
40. Schanz, T., Vermeer, P. A., & Bonnier, P. G. (2019). The hardening soil model: formulation and verification. In Beyond 2000 in computational geotechnics (pp. 281-296). Routledge.
41. Yang, K. H., Uzuoka, R., Lin, G. L., & Nakai, Y. (2017). Coupled hydro-mechanical analysis of two unstable unsaturated slopes subject to rainfall infiltration. Engineering Geology, 216, 13-30.
42. 日本建築學會(2001),「建築基礎構造設計方針」。
43. 日本道路協會(2012),「道路橋示方書.同解說」,V耐震設計篇。
44. 內政部營建署 (2011),「建築物耐震設計規範與解說」,第2~47頁。
45. 內政部營建署 (2001),「建築技術規則建築構照編耐震設計規範與解說」。
46. 歐章煜 (2017),「進階深開挖工程分析與設計」,科技圖書。
47. 吳沛軫、王明俊、彭嚴儒 (1997),「連續壁變形行為探討」,第七屆大地工程學術研究討論會,第601~608頁。
48. 廖瑞堂、歐章煜 (1997),「台北國家企業中心深開挖工程行為之研究-大地工程研究報告」,台北。
49. 黃俊鴻、陳正興、莊長賢 (2012),「本土HBF土壤液化評估法之不確定性」,地工技術,第133期,第77~86頁。
50. 黃俊鴻、陳正興 (1998) ,「土壤液化評估規範之回顧與前瞻」,地工技術,第70期,第23~44頁。
51. 徐明志、黃心泉、張登貴、詹絢存、俞清瀚 (2016),「二維分析程式在深開挖工程應用之探討~以PLAXIS程式為例」,地工技術,第149期,第35~66頁。
52. 台北四大技師公會(土木工程、大地工程、水土保持、結構工程) (2008) ,「台北市文山區萬壽路75巷政大御花園薔蜜風災土石崩塌鑑定報告」。
53. 林德貴、張國欽、鄒瑞卿 (2018),「台北貓空纜車T16-墩柱邊坡(T-16邊坡)複合型整治工程之效益評估」,中國水土保持學報,第49卷,第4期,第214~232頁。
54. 游裕偉、傅文鵬 (2017),「臺北貓空纜車T16塔柱下邊坡整治工程」,地工技術。
55. 紀雲曜、李雅芬、李德河 (2006),「土壤液化機率及危害度評估」,中國土木水利工程學刊,第18卷,第1期,第1~12頁。
56. 林冠良 (2015),「滲流與應力耦合分析探討降雨導致不飽和邊坡不穩定之機制」,國立臺灣科技大學,碩士論文。
57. 李宇軒 (2022),「小應變彈塑性模式於深開挖分析之研究」,國立臺灣科技大學,碩士論文。
58. 黃于庭 (2018),「台南地區土壤液化評估方法適用性之研究」,國立成功大學,碩士論文。
59. 林美怡 (2004),「統計區別分析於土壤分類之應用-台灣地區山坡地土壤」,中華大學,碩士論文。

無法下載圖示 全文公開日期 2025/08/16 (校內網路)
全文公開日期 2025/08/16 (校外網路)
全文公開日期 2025/08/16 (國家圖書館:臺灣博碩士論文系統)
QR CODE