簡易檢索 / 詳目顯示

研究生: 莊俊雄
Chuing-Hsiung Chuang
論文名稱: 創新型內建荷重計擠光工具應用於工具鋼自動化表面精加工之研究
Research on the automated surface finish of the tool steels using a load-cell-embedded burnishing tool
指導教授: 修芳仲
Fang-jung Shiou
口試委員: 范光照
Kuang-chao Fan
李維楨
Wei-chen Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 162
中文關鍵詞: 擠光加工田口實驗法最佳擠光參數表面粗糙度
外文關鍵詞: Load-cell-embedded burnishing tool, Taguchi’s method for experiments, Optimal burnishing parameters, Surface roughness
相關次數: 點閱:410下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文旨在研發一創新型內建荷重計之擠光工具,應用於STAVAX不生銹塑膠模具鋼與PDS5塑膠射出模具用鋼之自動化表面精加工之研究,其主要目的在探討擠光加工後之表面粗糙度改善情形。本研究以田口實驗法對STAVAX模具鋼找出滾動式擠光最佳化參數,再將其參數應用於2.5D曲面與3D自由曲面上,並以最佳化滾動式擠光加工參數為基礎,進行PDS5塑膠射出模具用鋼平面最佳擠光力量調整實驗,找出最佳之滾動式與滑動式擠光加工之正向擠光力,進而應用於陡峭之斜面與2.5D曲面,探討滑動式定力擠光加工與滑動式擠光加工之表面粗糙度改善情形。
本研究之最佳滾動式擠光加工參數以田口實驗L18直交表進行之,且由變異數分析,探討滾動式擠光加工參數對於表面粗糙度之影響,再經由全因子實驗與驗證實驗取得最佳化滾動式擠光參數組合。經實驗結果得知最佳化滾動式擠光加工參數為:潤滑劑-太古油( 1:50 )、擠光球材質-碳化鎢( Co 6% )、擠光力- 850 N、進給速率- 800 mm/min、間距- 60 μm、擠光加工路徑與球銑削方向垂直。應用最佳化滾動式擠光加工參數於STAVAX不生銹塑膠模具鋼平面試件,平均表面粗糙度可達Ra 0.03 μm ( Rmax 0.032 μm ),而應用於2.5D曲面與Enter鍵自由曲面,擠光加工後分別平均表面粗糙度約可達Ra 0.07 μm ( Rmax 1.405 μm )、與Ra 0.02 μm ( Ry 0.532 μm )。
經由PDS5塑膠射出模具用鋼平面擠光力量調整實驗得知,最佳滑動式擠光正向力為470 N,且利用此擠光正向力進行陡峭之斜面滑動式定力擠光加工與滑動式擠光加工之比較,得知以定力擠光加工60°陡峭斜面具有表面粗糙度之改善效果,可將表面粗糙度改善至Ra 0.06 μm ( Rmax 0.59 μm ),較滑動式擠光加工表面粗糙度Ra 0.35 μm ( Rmax 4.56 μm )要佳。


The objective of this research is to develop a load-cell-embedded burnishing tool integrated with a CNC machining center, to improve the surface roughness of the STAVAX plastic mold stainless steel and PDS5 plastic injection mold steel. Either the rolling-contact type or the sliding-contact type was possible for ball burnishing using the developed tool. The optimal plane surface burnishing parameters for the rolling-contact type, have been determined after conducting the Taguchi’s L18 matrix experiments, ANOVA analysis, and full factorial experiments. The optimal plane rolling-contact-type burnishing parameters for the STAVAX plastic mold stainless steel were the combination of the lubricant of water-soluble Oils( 1:50 ) , the ball material of WC ( Co 6% ) , the burnishing force of 850 N , the feed of 800 mm/min ,the stepover of 60 μm , and the burnishing path orthogonal to the ball milling direction. The surface roughness of the test specimens colud be improved from about Ra 0.8~1.3 μm to Ra 0.03 μm ( Rmax 0.032 μm ) in average using the optimal plane surface rolling-contact-type burnishing parameters. Applying the optimal plane surface rolling-contact-type burnishing parameters to a fine milled 2.5 dimensional test carrier and a freeform surface test carrier of Enter key for the STAVAX plastic mold stainless steel, respectively, the surface roughness of Ra 0.07 μm ( Rmax 1.405 μm ) and Ra 0.02 μm ( Ry 0.532 μm ) on the 2.5 dimensional surface and freeform surface, individually, were obtainable.

The characteristic curve of burnishing force vs. surface roughness for the PDS5 plastic injection mold steel using the sliding-contact type burnishing tool ,has been investigated and constructed. The optimal plane surface burnishing force for the PDS5 plastic injection mold steel was about 470 N based on the results of experiments. A force compensation strategy that results in the constant optimal normal force for burnishing an inclined surface or a 2.5 dimensional surface, has also been proposed to improve the surface roughness of the test object in this study. The surface roughness of an face milled inclined surface with a slope of 60 degrees can be improved from Ra 2.50 μm to Ra 0.06 μm ( Rmax 0.59 μm ) using force compensation, whereas the surface roughness was only Ra 0.35 μm (Rmax 4.56 μm) with no force compensation.

中文摘要 I Abstract III 誌 謝 V 目 錄 VI 圖索引 XI 表索引 XVII 第一章 緒論 1 1.1 研究動機及目的 1 1.2 文獻回顧 2 1.3 研究方法與論文架構 7 第二章 擠光加工與表面粗糙度之相關理論介紹 9 2.1 擠光加工原理 9 2.2 擠光加工之重要參數 10 2.2.1 擠光力 ( Burnishing force ) 10 2.2.2 擠光球材質 ( Ball material ) 11 2.2.3 進給 ( Feed ) 11 2.2.4 間距 ( Stepover ) 12 2.3 擠光加工之簡化塑性變形理論 13 2.4 表面粗糙度定義與表示法 15 2.4.1 表面粗糙度定義 15 2.4.2 表面粗糙度表示法 16 第三章 田口實驗計劃法 17 3.1 田口實驗計畫法簡介 17 3.2 參數設計 ( Parameter design ) 18 3.3 因子的分類 19 3.3.1 信號因子 ( Signal factor ) 19 3.3.2 雜音因子 ( Noise factor ) 19 3.3.3 可控因子 ( Control factor ) 20 3.4 品質損失函數 20 3.5 信號雜訊比 ( Signal to noise ratio ) 22 3.6 變異數分析 24 3.7 F分佈 ( F distribution ) 29 3.8 直交表介紹 31 3.9 驗證實驗 32 第四章 實驗方法與程序 35 4.1 實驗方法與實驗系統架構 35 4.1.1 實驗方法 35 4.1.2 實驗系統架構 36 4.2 擠光試件材料 40 4.2.1 STAVAX不生銹塑膠模具鋼 40 4.2.2 PDS5塑膠射出模具用鋼 42 4.3 實驗設備 44 4.3.1 MV-3A立式綜合切削中心機 44 4.3.2 切削動力計 ( Dynamometer ) 45 4.3.3 荷重計 ( Load cell ) 46 4.3.4 電子計價秤 47 4.3.5 舊型擠光工具 48 4.3.6 球拋光工具與配件 50 4.3.7 表面粗糙度量測儀 50 4.3.8 硬度試驗機 53 4.3.9 光學顯微鏡 ( O.M ) 53 4.3.10 CNC三次元量測儀 ( C.M.M ) 54 4.3.11 Cyclone掃瞄式三次元量床 54 4.3.12 KEYENCE彩色雷射3D立體形狀量測顯微鏡 56 4.3.13 Z軸設定器ZDS-50與光電式尋邊器OP-20 58 4.4 實驗流程 58 4.5 創新型內建荷重計之擠光工具之研發 61 4.5.1 創新型內建荷重計之擠光工具設計 61 4.5.2 創新型內建荷重計之擠光工具尋邊設計 66 4.5.3 創新型內建荷重計之擠光工具之實驗系統整合 67 4.5.4 創新型內建荷重計之擠光工具校驗 68 第五章 實驗結果與數據分析 76 5.1 創新型內建荷重計之擠光工具測試與製程測試實驗 76 5.1.1 平面擠光試件設計 76 5.1.2 創新型內建荷重計之擠光工具測試與製程測試 77 5.1.3 測試試件表面壓深量測 79 5.1.4 製程測試結果與數據分析 81 5.2 滾動式擠光加工之田口實驗 85 5.2.1 田口實驗之參數設計 85 5.2.2 S/N Ratio之計算 90 5.2.3 ANOVA變異數分析 96 5.2.4 表面粗糙度之最適值預測與驗證實驗 100 5.2.5 全因子實驗與驗證實驗 102 5.3 2.5D曲面與3D自由曲面之最佳滾動式擠光加工應用 109 5.3.1 2.5D曲面與3D自由曲面設計 109 5.3.2 2.5D曲面、3D自由曲面之擠光加工前置作業 111 5.3.4 2.5D曲面滾動式擠光加工應用結果 118 5.3.5 3D自由曲面滾動式擠光與球拋光加工應用結果 120 5.4 PDS5塑膠射出模具用鋼平面最佳擠光力調整實驗 123 5.4.1 平面擠光參數設計 123 5.4.2 平面最佳擠光力調整實驗結果 124 5.4.3 試件表面輪廓觀察 125 5.5 2.5D曲面之滑動式定力擠光加工應用 137 5.5.1 2.5D斜面與曲面設計之滑動式定力擠光加工前置作業 137 5.5.2 力量補正設計 140 5.5.3 2.5D曲面滑動式定力擠光加工 144 5.5.4 2.5D曲面滑動式定力擠光加工應用結果 145 第六章 結論與未來展望 147 6.1 結論 147 6.2 未來展望 150 參考文獻 151 附錄(一) 常見表面粗糙度參數之表示法 156 作者簡介 162

1.Rajasekariah, R., Vaidyanathan , S., ’’ Increasing the Wear- Resistance of Steel Components by Ball Burnishing’’, Wear, 34, pp. 183-188, 1975.
2.Loh, N. H., TAM, S. C., “Effects of Ball Burnishing Parameters on Surface Finish-A Literature Survey and Discussion”,Precision Engineering, Vol. 10,No. 4, Oct. p215-220,1988
3.Loh, N.H., Tam, S.C., Miyazawa, S., ”Statistical Analysis of the Effects of Ball Burnishing Parameters on Surface Hardness”, Wear, Vol. 129, No. 2, Feb. 1989, p235-243
4.Loh, N.H., Tam, S.C., Miyazawa, S., ”A Study of the Effects of Ball-Burnishing Parameters on Surface Roughness Using Factorial Design”, Journal of Mechanical Working Technology, Vol. 18, No. 1, Jan. 1989, p53-61
5.Loh, N.H., Tam, S.C., Miyazawa, S., “Optimisation of the Surface Finish Produced by Ball Burnishing”, Journal of Mechanical Working Technology, Vol. 19, No. 1, Apr. 1989, p101-107
6.Loh, N.H., Tam, S.C., Miyazawa, S., “Investigations on the Surface Roughness Produced by Ball Burnishing”, Int. J. Mach. Tools. Manufact., Vol. 31, No. 1, 1991, p75-81
7.Loh, N.H., Tam, S.C., Miyazawa, S., ”Ball burnishing of tool steel”, Precision Engineering, Vol. 15, No. 2, Apr. 1993, p100-105
8.Loh, N.H., Tam, S.C., Miyazawa, S., “Application of experimental design in ball burnishing”, Int. J. Mach. Tools Manufact., Vol. 33, No. 6, 1993, p841-852
9.Morimoto, T., Tamamura, K., “Burnishing Process Using a Rotating Ball-Tool—Effect of Tool Material on the Burnishing Process”, Wear, Vol. 147, No. 1, Jul. 1991, p185-193
10.Lee, S.S.G., Tam, S.C., Loh, N.H., Miyazawa, S., “An Investigation Into the Ball Burnishing of an AISI 1045 Free-Form Surface”, Journal of Materials Processing Technology, Vol. 29, No. 1-3, Jan. 1992, p203-211
11.Lee, S.S.G., Loh, N.H., “Computer-integrated ball burnishing of a plastic-injection-mold”, Journal of Materials Processing Technology, Vol. 57, No. 1-2, Feb. 1996, p189-194
12.Lee, S.S.G., Tam, S.C., Loh, N.H., “Ball Burnishing of 316L Stainless Steel”, Journal of Materials Processing Technology, Vol. 37, No. 1-4, Feb. 1993, p241-251
13.Hassan, A. M., Al-Bsharat, A. S., “Influence of Burnishing Process on Surface Roughness, Hardness, and Microstructure of Some Non-Ferrous Metals”, Wear, Vol. 199, No. 1, Nov. p1-8, 1996.
14.Hassan, A.M., Al-Bsharat, A.S., “Improvements in some properties of non-ferrous metals by the application of the ball-burnishing process”, Journal of Materials Processing Technology, Vol. 59, No. 3, May. 1996, p250-256
15.Hassan, A.M., “The Effects of Ball- and Roller-Burnishing on the Surface Roughness and Hardness of Some Non-Ferrous Metals”, Journal of Materials Processing Technology, Vol. 72, No. 3, Dec. 1997, p385-391
16.Hassan, A.M., “An Investigation Into the Surface Characteristics of Burnished Cast Al-Cu Alloys”, International Journal of Machine Tools & Manufacture, Vol. 37, No. 6, Jun. 1997, p813-821
17.Hassan, A.M., Al-Jalil, H.H., Ebid, A.A., “Burnishing Force and Number of Ball Passes for the Optimum Surface Finish of Brass Components”, Journal of Materials Processing Technology, Vol. 83, No. 1-3, Nov.1998, p176-179
18.Hassan, A. M., Maqableh, A. M., “The Effects of Initial Burnishing Parameters on Non-Ferrous Components”, Journal of Materials Processing Technology, 102, pp. 115-121(2000).
19.El-Wahab, A.I., Abdelhay, A.M., “A new algorithm and tool design for CNC profile burnishing”, Int. J. Prod. Res., Vol. 37, No. 7, 1998, p1997-1985
20.Nemat, M., Lyons, A. C., “An Investigation of the Surface Topography of Ball Burnished Mild Steel and Aluminium”, Int. J. Adv. Manuf. Technol., 16, pp. 469-473(2000).
21.賴憲耀,”製程參數對表面擠光粗糙度的影響”,國立台灣科技大學機械工程學系碩士論文,2000.
22.陳建樺,”塑膠模壓鑄用鋼之球擠光加工研究”,國立台灣科技大學機械工程學系碩士論文,2001.
23.楊擎政,” 以有限元素法分析製程參數對擠光表面粗糙度的影響” 國立台灣科技大學機械工程學系碩士論文,2002.
24.Bouzid, W., Tsoumarev, O., Sai, K., ”An Investigation of Surface Roughness of Burnished AISI 1042 Steel”, Int J Adv Manuf Technol 24: 120-125,2004.
25.Liviu, L., Sorin, N. V., Ioan, M.,”Effect of Working Parameters on Surface Finish in Ball-Burnishing of Hardened Steels”,Precision Engineering,2005.
26.L.N. López de Lacalle, A. Lamikiz, J. Muñoa and J.A. Sánchez, “Quality Improvement of Ball-End Milled Sculptured Surfaces by Ball Burnishing ”, International Journal of Machine Tools and Manufacture, Volume 45, Issue 15, December 2005, P 1659-1668
27.范光照編著,”精密量測 ”,高立書局,二版修訂2000.
28.張郭益、許全守編著,”精密量測 ”,全華書局,2003年初版.
29.張季娜,羅仕勇等編譯, ”田口式品質工程導論”,中華民國品 質管制學會發行,1993.
30.蘇朝墩,”產品穩健設計”,中華民國品質學會,1997.
31.李輝煌,“田口方法-品質設計的原理與實務”,高立圖書有限公司,2000.
32.洪坤宏,”由應力分析探討微鑽頭之最佳幾何設計及其鑽削球格陣列(BGA)基板之磨耗分析研究”國立台灣大學機械工程研究所碩士論文,2006.
33.劉克琪,”實驗設計與田口式品質工程”,華泰書局,台北,1994.
34.Phillip J.Ross , Taguchi Techniques for Quality Engineering, 2nd Edition , McGraw-Hill , 1996.
35.Taguchi, G., Yokoyama, T., “Taguchi Methods: Design of Experiments”, Dearborn, MI, 1993
36.Phadke, M.S., “Quality Engineering Using Robust Design”, Prentice-Hall, 1989
37.徐智誠,’’以球擠光與拋光製程做塑膠模具用鏡面不銹鋼之表面精加工研究’’,國立台灣科技大學機械工程碩士論文,2005.
38.台灣盛百股份有限公司,http://www.assab.com.tw/home.asp
39.“塑膠模具鋼材之選擇”,塑膠模具鋼材研討會技術資料,1985年7月.
40.邱如德,”以球擠光與拋光製程對自由曲面模具之表面精加工之研究”,國立台灣科技大學機械工程系碩士論文,2002.
41.Mitutoyo Geopak-Window 操作手冊,台灣三豐儀器股份有限公司,2005.
42.台灣基恩斯股份有限公司 http://www.keyence.com.tw/
43.邱泓翔,”以振動式球拋光製程做鏡面不銹鋼之自動化表面精加工研究”,國立台灣科技大學機械工程學系碩士論文,2006.

無法下載圖示 全文公開日期 2012/06/08 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE