簡易檢索 / 詳目顯示

研究生: 楊智為
Chih-wei Yung
論文名稱: 在 IEEE 802.16 網路中支援分群之優先權化頻寬請求機制之研究
A Study on Prioritized Bandwidth Request Mechanisms with Grouping in IEEE 802.16 Networks
指導教授: 鍾順平
Shun-Ping Chung
口試委員: 王乃堅
Nai-Jian Wang
林永松
Yeong-Sung Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 79
中文關鍵詞: IEEE 802.16頻寬請求群組初始視窗大小允許機率成功送達率
外文關鍵詞: IEEE 802.16, bandwidth request, grouping, initial window size, granting probability, throughput
相關次數: 點閱:205下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

IEEE 802.16無線都會網路標準,也可稱為WiMAX,已成為一項極具潛力之4G無線技術。在WiMAX中,基地台針對都會區提供高速進接以及透過點對點連線來服務用戶台。WiMAX支援五種流量UGS、rtPS、ertPS、nrtPS和BE。UGS、ertPS和rtPS屬於即時性流量且使用免競爭機制,然而nrtPS和BE屬於非即時性流量且使用競爭機制。明確的說,一個非即時流量的封包要傳送時,首先要先送出頻寬請求去做頻道競爭。一旦它在競爭中獲勝,用戶台就會尋求獲得來自基地台的允許以完成頻寬預留。在這篇研究中,我們著重在被nrtPS和BE使用的頻寬請求機制。因為一些以競爭為基礎的服務可能包含語音和影像的封包,這些封包需要較佳的處理,所以在以競爭為基礎的流量間提供優先權的差異化是必要的。首先,我們在頻寬請求進階競爭階段中提供群組機制去降低頻繁的碰撞。除此之外,每個群組中的站台可以有不同的競爭參數,像是初始視窗大小和最大視窗大小。第二,每個群組中的站台可獲得不同的允許機率。我們推導一個解析方法,並且就每一個群組的成功送達率、平均延遲、封包丟棄率和碰撞機率去研究提出之優先權化頻寬請求機制的效能。最後但並非最不重要的,我們使用C語言來撰寫電腦模擬程式,且以獲得的電腦模擬結果來驗證數學解析結果的正確性。對於我們所考慮的情形,解析結果皆接近模擬結果。


he IEEE 802.16 wireless metropolitan area network standard, which is also known as WiMAX, has become a promising 4G wireless technology. In WiMAX, the base station provides a high rate access for a metropolitan area, and the subscriber stations (SS) are served via point-to-point links. There are five types of traffics supported: UGS, rtPS, ertPS, nrtPS, and BE. Real-time traffics, e.g., UGS, ertPS and rtPS, are served using a contention-free mechanism, whereas non-real-time traffics, e.g., nrtPS, and BE, are served using a contention-based mechanism. Specifically, for a non-real-time traffic with packets to send, first, bandwidth requests are sent to contend for channel access. Once the bandwidth request wins the access contention, the SS seeks to obtain a grant from the base station to complete the bandwidth reservation. In this work, we focus on the bandwidth request mechanism used by BE and nrtPS. Since some contention-based applications may include voice and video packets and thus need better treatment, prioritization is necessary to provide service differentiation among contention-based traffics. First, we provide the grouping mechanism to alleviate the frequent collisions during bandwidth request access contention phase. Furthermore, each group of stations can have different contention parameters, e.g., initial window size and maximum window size. Second, each group of stations can be assigned a different request granting probability. We derive an analytical method to study the performance of the proposed prioritized bandwidth request mechanism in terms of throughput, mean delay, dropping probability, and collision probability for each group. Last but not least, analytical results are validated via simulation results, and the simulation program is written in C language. The analytical results are close to the simulation result for the cases studied.

CONTENTS 摘要 Abstract CONTENTS List of Figures List of Table Chapter 1 Introduction Chapter 2 System Model 2.1 Analytical Model 2.2 Performance Metrics 2.3 Service Differentiation Chapter 3 Numerical Results 3.1 Accuracy of Analytical Results 3.2 Grouping 3.3 Grant Probability 3.4 Timeout Period (T16) 3.5 Timeout Period and Grant Probability 3.6 Initial Window Size 3.7 Prioritized BW Request Mechanism 3.7.1 Grant Probability 3.7.2 Maximum Window Size 3.7.3 Initial Window Size Chapter 4 Conclusions References

References
[1] C. So-In, R. Jain, and A.-K, Tamimi, “Scheduling in IEEE 802.16e Mobile WiMAX Networks: Key Issues and a Survey,” IEEE Journal on Selected Areas in Communications, vol. 27, Feb. 2009, pp. 156-171.
[2] B. Li and H. Kong, “Wireless Broadband Access a Survey on Mobile WiMAX,” IEEE Communications Magazine, 2007, pp. 70-75.
[3] R.J. Kennelly, “IEEE Standards for Physical and Data Communications.,” Biomedical instrumentation & technology / Association for the Advancement of Medical Instrumentation, vol. 30, 2004, pp. 172-5.
[4] Q. Albluwi and N. Ali, “A Dynamic Frame Partitioning Scheme for IEEE 802.16 Mesh and Multihop Relay Networks,” ICC, 2009.
[5] Y.-H., Liang, B.-J., Chang, S.-J., Hsieh, and D.-Y., Wang, “Analytical Model of QoS-Based Fast Seamless Handoff in IEEE 802.16j WiMAX Networks,” IEEE Transactions on Vehicular Technology, vol. 59, Sep. 2010, pp. 3549-3561.
[6] W. Du, Z. Ji, Z. Wang, and W. Jia, “Waiting Queue Based Bandwidth Allocation Architecture for nrtPS and BE Services in IEEE 802.16 PMP Network,” 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing, Oct. 2008, pp. 1-5.
[7] Y.P. Fallah, F. Agharebparast, M.R. Minhas, H.M. Alnuweiri, and V.C.M. Leung, “Analytical Modeling of Contention-Based Bandwidth Wireless Networks,” Wireless Networks, vol. 57, 2008, pp. 3094-3107.
[8] Y. Cheng, Y. Zhang, and X. Gao, “A Finite Retry Limit Analysis of Contention Based Bandwidth Request Mechanism for IEEE 802.16,” The 5th International Conference on Wireless Communications, Networking and Mobile Computing, Sep. 2009, pp. 1-6.
[9] H. Fattah and H. Alnuweiri, “Performance Evaluation of Contention-Based Access in IEEE 802.16 Networks with Subchannelization,” ICC, Jun. 2009, pp. 1-6.
[10] K. Chen, Y. Zhou, J. He, and Z. Tang, “Service Differentiation for the Bandwidth Request Scheme in Fixed IEEE 802.16 Networks,” The 4th IEEE International Conference on Circuits and Systems for Communications, May. 2008, pp. 718-722.
[11] D. Staehle and R. Pries, “Comparative Study of the IEEE 802.16 Random Access Mechanisms,” The International Conference on Next Generation Mobile Applications, Services and Technologies, Sep. 2007, pp. 334-339.
[12] Q. Ni and L. Hu, “An Unsaturated Model for Request Mechanisms in WiMAX,” IEEE Communications Letters, vol. 14, Jan. 2010, pp. 45-47.
[13] Q. Ni, S. Member, L. Hu, A. Vinel, Y. Xiao, and S. Member, “Performance Analysis of Contention Based Bandwidth Request Mechanisms in WiMAX Networks,” IEEE Systems journal, vol. 4 , Dec 2010, pp. 477-486.
[14] “IEEE Standard for Local and Metropolitan Area Networks Part 16 : Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment 2 : Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and,” ANSI/IEEE, vol. 2005, 2006, pp.1-822.

無法下載圖示 全文公開日期 2016/07/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE