簡易檢索 / 詳目顯示

研究生: 劉奎均
Kuei-Chun Liu
論文名稱: 基於智慧型手機之眼底相機設計
Design of Fundus Camera Based on Smartphone
指導教授: 李宗憲
Tsung-Xian Lee
口試委員: 李宗憲
Tsung-Xian Lee
陳建宇
Chien-Yu Chen
孫文信
Wen-Shing Sun
鄧敦建
Tun-Chien Teng
韓政男
Cheng-Nan Han
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 色彩與照明科技研究所
Graduate Institute of Color and Illumination Technology
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 87
中文關鍵詞: 眼底攝影可攜式眼底相機雜散光分析
外文關鍵詞: Retinal Photography, Portable Fundus Camera, Stray Light Analysis
相關次數: 點閱:219下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人眼的視網膜上分布著大量的微血管,藉由觀察眼底的視網膜,不只能發現眼睛疾病的狀況,也可以為人體許多其他器官病變提供早期診斷的方式,如糖尿病、高血壓、心臟病等疾病。在眾多的醫學檢測方式中,視網膜攝影為目前唯一可以採用非侵入式觀察微血管的檢測技術,具有安全、衛生、快速及可重複使用等特性。隨著智慧型手機的普及以及現代人對身體健康及預防醫療的重視,研發製作基於智慧型手機的可攜式眼底相機不僅能讓個人及時監控身體狀況,亦有利於將眼底檢查推廣至落後及偏遠地區,具有十分重要的意義。
    因此,本文基於手機相機提出一種照明與成像光路結合的眼底相機架構,利用光路可逆的概念,設計可同時滿足成像及照明所需之透鏡組,且兼具小體積、少元件、高可攜性之特性。本研究進一步加入偏振光學元件,降低針對眼球角膜及光學元件的介面反射光所造成的雜散光對成像品質的影響,並利用低色溫光源增強眼底影像能量。本研究的最終設計結果顯示:在眼底觀測範圍為45度視角時,眼底照明均勻度大於90%,雜散光能量小於總能量6%,其物方最高分辨率可達7微米。


    The retina of the human eye is distributed with large numbers of microvessels. By the retinal detection, we can obtain the state of the eye disease and the information used for early diagnosis of many other organ diseases such as diabetes, hypertension, heart disease and so on. In many therapeutic methods, retinal photography is one of the non-invasive observation technology of microvascular detection, with safety, health, rapid and reusable. With the popularity of smartphones and the attention of health and preventive care, development of smartphone-based camera can allow individuals to monitor the physical condition promptly and helps the promotion of retinal examination and medical rescue in the backward country and remote areas.
    Therefore, a fundus camera architecture based on the smartphone camera which combined of lighting and imaging optical path is proposed by this research. By the reversible of the optical path, we designed the lens group to meet the imaging and illumination requirements and kept the system in small size to reach excellent portability. In this study, the polarizing optical element was further added to reduce the effect of stray light composed of the interfacial reflected light from the cornea and the optical elements, and enhance the signal to noise ratio of fundus image by using a low color temperature light source. The final results of this study show that the fundus illumination uniformity is greater than 90% when the fundus observation range is 45 degrees, the stray light energy is less than 6% of the total energy, and the highest resolution of the object is 7 microns.

    中文摘要 i ABSTRACT ii 誌謝 iii 目錄 iv 圖目錄 vii 表目錄 x 第1章、 緒論 1 1.1 研究背景 1 1.2 研究動機 1 第2章、 人眼的基本構造及光學特性 3 2.1 人眼的結構 3 2.2 人眼組織光學特性 6 2.2.1 人眼組織穿透特性 7 2.2.2 眼底反射特性 7 2.2.3 人眼組織之介面反射特性 9 2.3 人眼光生物安全值 10 2.4 本章小結 12 第3章、 眼底相機構造與文獻回顧 13 3.1 眼底檢測技術簡介 13 3.1.1 檢眼鏡 13 3.1.2 眼底斷層掃描儀 15 3.1.3 眼底相機 16 3.2 基於數位電子相機之眼底相機文獻回顧 18 3.3 本章小結 22 第4章、 新式眼底相機架構設計 23 4.1 新式眼底相機光學架構 23 4.2 新式眼底相機抑制雜散光線 25 4.3 新式眼底相機架構模擬與驗證 27 4.3.1 透鏡套件鏡組設計及模擬 28 4.3.2 透鏡套件鏡組成像與照明範圍實驗 33 4.3.3 透鏡套件鏡組眼球拍攝模擬 36 4.3.4 透鏡套件鏡組眼球拍攝實驗 38 4.4 本章小結 40 第5章、 基於智慧型手機之眼底相機設計 41 5.1 便攜式眼底相機設計目標 41 5.1.1 視角要求 41 5.1.2 相對照度要求 42 5.1.3 畸變要求 43 5.1.4 調製轉換函數(Modulation Transfer Function)要求 43 5.2 成像系統設計 45 5.3 照明系統設計 50 5.4 雜散光分析 54 5.5 設計鏡組與透鏡套件比較與分析 59 5.6 本章小結 62 第6章、 結論與未來展望 63 第7章、 參考文獻 64 附錄一、光學透鏡套件 68 附錄二、Kenko 49 mm Zeta Wideband C-PL(W) 69 附錄三、OEMI-7眼球模型 70 附錄四、透鏡工程圖 71

    1. W. H. Organization, Strategies for the prevention of blindness in national programmes: a primary health care approach (World Health Organization, 1997).
    2. A. Bastawrous, R. Cheeseman, and A. Kumar, "iPhones for eye surgeons," Eye 26, 343 (2012).
    3. A. Bastawrous and M. J. Armstrong, "Mobile health use in low-and high-income countries: an overview of the peer-reviewed literature," Journal of the royal society of medicine 106, 130-142 (2013).
    4. "眼球_互动百科", Baike.com, 2017. [Online]. Available: http://www.baike.com/wiki/%E7%9C%BC%E7%90%83. [Accessed: 07- May- 2017].
    5. H.-L. Liou and N. A. Brennan, "Anatomically accurate, finite model eye for optical modeling," JOSA A 14, 1684-1695 (1997).
    6. C. A. Curcio and K. A. Allen, "Topography of ganglion cells in human retina," Journal of comparative Neurology 300, 5-25 (1990).
    7. M. Häggström, "Medical gallery of Mikael Häggström 2014," Wikiversity Journal of Medicine 1(2014).
    8. E. A. Boettner and J. R. Wolter, "Transmission of the ocular media," Investigative Ophthalmology & Visual Science 1, 776-783 (1962).
    9. G. Van Blokland, "Ellipsometry of the human retina in vivo: preservation of polarization," JOSA A 2, 72-75 (1985).
    10. L. Diaz-Santana and J. Dainty, "Effects of retinal scattering in the ocular double-pass process," JOSA A 18, 1437-1444 (2001).
    11. A. J. Cohen and R. A. Laing, "Multiple scattering analysis of retinal blood oximetry," IEEE Transactions on Biomedical Engineering, 391-400 (1976).
    12. D. K. Sardar, R. M. Yow, A. T. Tsin, and R. Sardar, "Optical scattering, absorption, and polarization of healthy and neovascularized human retinal tissues," Journal of biomedical optics 10, 051501-051501-051508 (2005).
    13. M. Hammer and D. Schweitzer, "Quantitative reflection spectroscopy at the human ocular fundus," Physics in medicine and biology 47, 179 (2002).
    14. D. Van Norren and L. Tiemeijer, "Spectral reflectance of the human eye," Vision Research 26, 313-320 (1986).
    15. F. C. Delori and K. P. Pflibsen, "Spectral reflectance of the human ocular fundus," Applied optics 28, 1061-1077 (1989).
    16. F. C. Delori, "Spectrophotometer for noninvasive measurement of intrinsic fluorescence and reflectance of the ocular fundus," Applied optics 33, 7439-7452 (1994).
    17. F. C. Delori and S. A. Burns, "Fundus reflectance and the measurement of crystalline lens density," JOSA A 13, 215-226 (1996).
    18. M. R. Querry, "Direct Solution of the Generalized Fresnel Reflectance Equations*," JOSA 59, 876-877 (1969).
    19. M. J. Standard, Ophthalmic Instruments: Fundamental Requirements and Test Methods. Light hazard protection (ISO 150004-2:2007, IDT) (Jabatan Standard Malaysia, 2009).
    20. C. R. Keeler, "The ophthalmoscope in the lifetime of Hermann von Helmholtz," Archives of Ophthalmology 120, 194-201 (2002).
    21. I. Cordero, "Understanding and caring for an indirect ophthalmoscope," Community eye health 29, 57 (2016).
    22. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, "Optical coherence tomography," Science (New York, NY) 254, 1178 (1991).
    23. "3nethra classic Ophthalmic Imaging Device from Forus Health - Product Description and Details", Ophthalmologyweb.com, 2017. [Online]. Available: http://www.ophthalmologyweb.com/5820-Digital-Fundus-Camera/11222136-3nethra-classic-Ophthalmic-Imaging-Device/?pda=5820|11222136_1_0|||&dfp=true. [Accessed: 24- Jul- 2017]..
    24. C. Riva and I. Ben-Sira, "Two-point fluorophotometer for the human ocular fundus," Applied optics 14, 2691-2693 (1975).
    25. H. R. Novotny and D. L. Alvis, "A method of photographing fluorescence in circulating blood in the human retina," Circulation 24, 82-86 (1961).
    26. E. DeHoog and J. Schwiegerling, "Fundus camera systems: a comparative analysis," Applied optics 48, 221-228 (2009).
    27. K. Tran, T. A. Mendel, K. L. Holbrook, and P. A. Yates, "Construction of an Inexpensive, Hand-Held Fundus Camera through Modification of a Consumer “Point-and-Shoot” CameraPoint-and-Shoot Hand-Held Fundus Camera," Investigative ophthalmology & visual science 53, 7600-7607 (2012).
    28. R. N. Maamari, J. D. Keenan, D. A. Fletcher, and T. P. Margolis, "A mobile phone-based retinal camera for portable wide field imaging," British Journal of Ophthalmology, bjophthalmol-2013-303797 (2013).
    29. A. Russo, F. Morescalchi, C. Costagliola, L. Delcassi, and F. Semeraro, "A novel device to exploit the smartphone camera for fundus photography," Journal of ophthalmology 2015(2015).
    30. O. Balland, A. Russo, P. F. Isard, I. Mathieson, F. Semeraro, and T. Dulaurent, "Assessment of a smartphone‐based camera for fundus imaging in animals," Veterinary ophthalmology (2016).
    31. B. Raju and N. Raju, "Initial experience with DIYretCAM–A do it yourself retinal camera," Kerala Journal of Ophthalmology 28, 53 (2016).
    32. U. Sander, "Surgical microscope," (Google Patents, 2008).
    33. E. DeHoog, H. Luo, K. Oka, E. Dereniak, and J. Schwiegerling, "Snapshot polarimeter fundus camera," Applied optics 48, 1663-1667 (2009).
    34. Y. Wang, M. Kudenov, A. Kashani, J. Schwiegerling, and M. Escuti, "Snapshot retinal imaging Mueller matrix polarimeter," in SPIE Optical Engineering+ Applications, (International Society for Optics and Photonics, 2015), 96130A-96130A-96111.
    35. P. M. Hubel, J. Liu, and R. J. Guttosch, "Spatial frequency response of color image sensors: Bayer color filters and Foveon X3," in Proc. SPIE, 2004), 402-407.
    36. E. DeHoog and J. Schwiegerling, "Optimal parameters for retinal illumination and imaging in fundus cameras," Applied optics 47, 6769-6777 (2008).

    QR CODE