簡易檢索 / 詳目顯示

研究生: 林家歆
Chia-Hsin Lin
論文名稱: 細胞式網路具有逾時與重傳的未決興趣表效能評估
Performance Evaluation of the Pending Interest Table with Timeout and Retrial in the Cellular Network
指導教授: 鍾順平
Shun-Ping Chung
口試委員: 林永松
Yeong-Sung Lin
王乃堅
Nai-Jian Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 212
中文關鍵詞: 以內容為中心的網路未決興趣表重傳逾時交遞阻塞機率
外文關鍵詞: CCN, PIT, retrial, timeout, handoff, blocking probability
相關次數: 點閱:238下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著網際網路的快速發展,以主機為中心的IP 網路架構已經不能滿足當今對網路的需求。因此,以內容為中心的網路(CCN)出現進而取代傳統的IP 網路。因為未決興趣表(PIT)對於CCN 網路的效能具有重大的影響,我們的研究針對植基在細胞式網路的PIT 效能評估。在本篇研究中,我們分別考慮了四種PIT 佔用情境:只有一種新抵達到細胞中的興趣封包但不具重傳機制、只有一種新抵達到細胞中的興趣封包但具重傳機制、有新抵達或是交遞到細胞的興趣封包但不具重傳機制、有新抵達和交遞到細胞興趣封包但具重傳機制。在不論是否具有重傳機制但只有新抵達興趣封包的情境中,我們著重在研究只有一個單一細胞,或是所有節點皆是靜止的情形,且因此只有一種可能抵達的封包: 新抵達的興趣封包。而在不具重傳機制的情境下,如果PIT 中所有的條目都被佔用,新抵達到細胞的興趣封包會立刻被迫離開系統。然而在具重傳的機制情境下,新抵達的興趣封包可能會進入重傳佇列且稍後再嘗試尋找PIT 中空閒的條目。而在不論是否具有重傳機制但不只有新抵達的細胞還有交遞到此細胞的興趣封包的情境中,我們著重在研究有多個細胞且所有節點都是動態的情形,且因此有兩種可能抵達的封包:新抵達的興趣封包或是交遞到此細胞的興趣封包。首先,我們推導所考慮系統的解析模型。我們利用疊代演算法來求得穩態機率分布,且計算感興趣的效能指標。系統參數包含興趣抵達速率、興趣服務速率、興趣逾時時間、興趣聚合機率、興趣交遞速率、與興趣重傳速率。我們感興趣的效能指標是興趣阻塞機率、平均興趣系統延遲、平均興趣封包數、成功送達率、未完成率。第二,我們也比較了具有重傳機制與不具有重傳機制之間的差異性,還有在多個細胞中跟單一細胞之間的不同之處。第三,我們發現,在成功送達率與未完成率方面,具重傳機制的效能會勝過不具重傳機制的效能,但重傳機制會導致平均系統延遲及阻塞機率的增加。最後但非最不重要,在大部分情形下解析結果與模擬結果是很接近的。


    With the rapid development of Internet, the host-to-host IP Internet architectures cannot satisfy the requirement of Internet. Therefore, the content-centric networking (CCN) emerges to replace the traditional IP networking. Because the pending interest table (PIT) has a significant effect on the performance of the CCN network, we focus on the research on performance evaluation of the PIT built on the cellular network. In this work, we study the four scenarios for PIT occupancy: new interest without retrial, new interest with retrial, new and handoff interest without retrial, new and handoff interest with retrial. In new interest without retrial or with retrial scenarios, we focus on the cases where there is a single cell or all nodes are stationary and thus there are only
    one class of arrivals: new interest. In the scenarios without retrial, if all entries are
    occupied, an arriving interest is cleared from the system immediately whereas in the scenarios with retrial, an arriving interest may enter into a retrial queue and retry to find an idle entry later. In new and handoff interest without retrial or with retrial scenarios, we focus on the cases where there are multiple cells and all nodes are mobile and thus there are two classes of arrivals: new interest and handoff interest. First, we derived the analytical models for the system considered. An iterative algorithm is developed to find the steady state probability distribution and the performance measures of interest. The system parameters include interest arrival rate, interest service rate, interest timeout time, interest aggregation probability, interest impatient rate, interest dwell rate, interest retrial rate, and interest retrial probability. The performance measures of interest are interest blocking probability, average number in service, average system delay,throughput, and incomplete rate. Second, for comparison, we study the performance with retrial and without retrial and the difference between the cases in a single cell or multiple cells. Third, it is shown that performance with retrial outperforms that without retrial in terms of the throughput and the incomplete rate at the expense of the average system delay and blocking probabilities. Last but not least, in most cases studied the analytical results are shown to be in good agreement with the simulation results.

    中文摘要 Abstract Contents 1. Introduction 2. System model 2.1 New interest without retrial 2.2 New interest with retrial 2.3 New and handoff interest without retrial 2.4 New and handoff interest with retrial 3. Analytical model 3.1 New interest without retrial 3.1.1 Model diagram 3.1.2 State balance equations 3.1.3 Performance measures 3.2 New interest with retrial 3.2.1 Model diagram 3.2.2 State balance equations 3.2.3 Iterative algorithm 3.2.4 Performance measures 3.3 New and handoff interest without retrial 3.3.1 Model diagram 3.3.2 State balance equations 3.3.3 Performance measures 3.4 New and handoff interest with retrial 3.4.1 Model diagram 3.4.2 State balance equations 3.4.3 Iterative algorithm 3.3.4 Performance measures 4. Simulation model 4.1 New interest without retrial 4.1.1 Main program 4.1.2 Arrival subprogram 4.1.3 Timeout subprogram 4.1.4 Impatient subprogram 4.1.5 Departure subprogram 4.1.6 Performance measures 4.2 New interest with retrial 4.2.1 Main program 4.2.2 Arrival subprogram 4.2.3 Timeout subprogram 4.2.4 Impatient subprogram 4.2.5 Departure subprogram . 4.2.6 Retrial impatient subprogram 4.2.7 Retrial subprogram 4.2.8 Performance measures 4.3 New and handoff interest without retrial 4.3.1 Main program 4.3.2 New arrival subprogram 4.3.3 Handoff arrival subprogram 4.3.4 New timeout subprogram 4.3.5 Handoff timeout subprogram 4.3.6 New dwell subprogram 4.3.7 Handoff dwell subprogram 4.2.8 Performance measures 4.3.9 Handoff departure subprogram 4.3.10 Performance measures 4.4 New and handoff interest with retrial 4.4.1 Main program 4.4.2 New arrival subprogram 4.4.3 Handoff arrival subprogram 4.4.4 New timeout subprogram 4.4.5 Handoff timeout subprogram 4.4.6 New dwell subprogram 4.4.7 Handoff dwell subprogram 4.4.8 New departure subprogram 4.4.9 Handoff departure subprogram 4.4.10 New retrial dwell subprogram 4.4.11 Handoff retrial dwell subprogram 4.4.12 New retrial subprogram 4.4.13 Handoff retrial subprogram 4.4.14 Performance measures 5. Numerical results 5.1 New interest without retrial 5.1.1 New interest arrival rate 5.1.2 New interest service rate 5.1.3 New interest timeout time 5.1.4 New interest aggregation probability 5.1.5 New interest impatient rate 5.2 New interest with retrial 5.2.1 New interest arrival rate 5.2.2 New interest service rate 5.2.3 New interest timeout time 5.2.4 New interest aggregation probability 5.2.5 New interest impatient rate 5.2.6 New interest retrial rate 5.2.7 New interest retrial probability 5.3 New and handoff interests without retrial 5.3.1 New interest arrival rate 5.3.2 New interest service rate 5.3.3 New interest timeout time 5.3.4 New interest aggregation probability 5.3.5 New interest dwell rate 5.4 New and handoff interests with retrial 5.4.1 New interest arrival rate 5.4.2 New interest service rate 5.4.3 New interest timeout time 5.4.4 New interest aggregation probability 5.4.5 New interest dwell rate 5.4.6 New interest retrial rate 5.4.7 New interest retrial probability 6. Conclusions References

    [1] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman, “A survey of information-centric networking,” IEEE Communications Magazine, vol. 50, no. 7, pp. 26–36, 2012.

    [2] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. Claffy, P. Crowley, C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,” Tech. Rep. NDN-0019, Revision 1, NDN, Apr. 2014.

    [3] B. Li, M. Ma, and X. Yang, “Advanced perceptive forwarding in Content- Centric Networks,” IEEE Access , pp. 4595 – 4605, 2017.

    [4] A. Kazi and H. Badr, “Some observations on the performance of ccn-flooding,”, 2014 International Conference on Networking and Communications (ICNC), pp. 334–340, Feb 2014.

    [5] X. Qiao, J.Chen, W.Tan, and S.Dustdar “Service provisioning in Content-Centric Networking: challenges, opportunities, and promising directions,” IEEE Internet Computing, vol. 20, no. 2, 2016, pp. 26–33

    [6] V. Jacobson, D. K. Smetters, J. D. Thornton, M. Plass, N. Briggs, and R.Braynard, “Networking named content,” Communication of the ACM, vol. 55, pp. 117–124, Jan. 2012.

    [7] A. J. Abu and B. Bensaou, “Modelling the pending interest table occupancy in ccn with interest timeout and retransmission,” 40th IEEE LCN, pp. 37–45, 2015.

    [8] A. J. Abu and B. Bensaou, “A Markov model of CCN pending interest table occupancy with interest timeout and retries ” , 2016 IEEE International Conference on Communications (ICC), pp. 1–6, 2016.

    [9] M. Marsan, G. de Carolis, E. Leonardi, R. Lo Cigno, and M. Meo, “Efficient estimation of call blocking probabilities in cellular mobile telephony networks with customer retrials,” IEEE JSAC vol. 19, pp. 332–346, Feb 2001.

    [10] H. Dai, B. Liu, Y. Chen, and Y. Wang, “On pending interest table in named data networking,” the Eighth ACM/IEEE Symposium on Architectures for Networking and Communications Systems, ANCS ’12, pp. 211–222, 2012.

    [11] M. Virgilio, G. Marchetto, and R. Sisto, “Pit overload analysis in content centric networks,” the 3rd ACM SIGCOMM Workshop on Information-centric Networking, ICN ’13, pp. 67–72, 2013.

    [12] K. Wang, J. Chen, H. Zhou, Y. Qin, and H. Zhang, “Modeling denial-of-service against pending interest table in named data networking,” International Journal of Communication Systems, vol. 27, no. 12, pp. 4355–4368, 2014.

    [13] A. J. Abu, B. Bensaou, and J. M. Wang, “Interest packets retransmission in lossy ccn networks and its impact on network performance,” 1st International Conference on Information-centric Networking, pp. 167–176, 2014.

    [14] W. You, B. Mathieu, P. Truong, J. Peltier, and G. Simon, “Dipit: A distributed bloom-filter based pit table for ccn nodes,” 21st International Conference on Computer Communications and Networks (ICCCN), pp. 1–7, 2012.

    [15] R. Ravindran, G. Wang, X. Zhang, and A. Chakraborti, “Supporting dual-mode forwarding in content-centric network,” 2012 IEEE International Conference on Advanced Networks and Tele communications Systems (ANTS), pp. 55–60, 2012.

    無法下載圖示 全文公開日期 2023/07/25 (校內網路)
    全文公開日期 2028/07/25 (校外網路)
    全文公開日期 2028/07/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE