簡易檢索 / 詳目顯示

研究生: 陳建男
Chien-Nan Chen
論文名稱: 內建電流檢測電路之電流模式直流轉直流切換式轉換器
A Current-Mode CMOS DC-DC Switching Converter with on-chip Current-Sensor
指導教授: 陳伯奇
Po-Ki Chen 
口試委員: 羅有綱
Yu-Kang Lo
宋國明
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 89
中文關鍵詞: 降壓式轉換器電流模式控制直流轉換器脈衝寬度調節
外文關鍵詞: BUCK Converter, Current mode control DC/DC converter, PWM
相關次數: 點閱:376下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此篇論文將功率電晶體整合在晶片上並內建電流檢測電路來提供回授控制用,檢測出之電感電流加上內建的補償斜坡後可應用在電流模式控制直流轉直流轉換器的回授控制上。因此,設計電路時不需要額外的電流檢測電路和額外的輸入、輸出腳。此直流轉直流轉換器是使用台積電 的製程,模擬結果顯示此轉換器可以操作在1.5MHz、輸入電源4.5V到3.5V適合應用於鋰電池提供電力的應用上。外接的濾波電感為 、濾波電容為 ,電壓輸出最大效率為94.3%,輸出電流可從50mA到500mA。此轉換器電源調整率的操作電壓範圍為3.5V至4.5V,模擬結果證明輸出電壓皆可穩定於所設定之值,且輸出最大漣波為 ;負載調整率在輸出負載從重載0.5A變化至輕載0.1A的情況下,輸出漣波最大為 ;綜合調整率整合了電源調整率與負載調整率的模擬條件,輸出漣波最大為 ;製程變異搭配3.8V、3.6V、4V三種電壓變異的輸出漣波最大為 ;溫度變異的模擬於正常條件下從 變化至 ,其輸出漣波最大為 。由上述的模擬結果不難看出,本電路之效能可媲美一般商業IC。而所占用之晶片面積僅僅只有 ,只有過去發表版本的53.66%,非常適合應用在廉價且高轉換效率之可攜式產品上,有助於大幅提高相關產品之競爭力。


    A current-mode CMOS DC–DC converter with integrated power switches and on-chip current sensor for feedback control is presented in this paper. The sensed inductor current, combined with the internal ramp signal, can be used for current-mode DC–DC converter feedback control. In addition, no external components and no extra I/O pins are required for the current-mode controller. The DC–DC converter has been fabricated with the TSMC CMOS digital process. The simulation results show that this converter with on-chip current sensor can operate in 1.5 MHz with supply voltage varied from 4.5 to 3.5 V, which is suitable for single-cell lithium-ion battery supply applications,
    with a off-chip capacitor and a off-chip inductor. The maximum power efficiency is 94.3% for load current varied from 50 to 500 mA. The supply voltage range of the converter can be adjusted from 3.5V to 4.5V. For line regulation simulation, the output voltage is always stabilized at the preset value with a maximum output ripple of . For load regulation simulation by varying the output current from 0.5A heavy load to 0.1A light load, the maximum output ripple is merely . The combined regulation has been simulated with both line regulation and load regulation, and the maximum output ripple is . There are three supply voltages of 3.8V, 3.6V, and 4V simulated along with process variation to generate a maximum output ripple of . For temperature variation of ~ , the maximum output ripple is . All above results confirm the excellence of the proposed circuit compared with the commercialized chips. The chip size of the proposed circuit is which is merely 53.66% of those of its predecessors. With such tiny size, the proposed converter is excellent for low cost but high efficiency portable applications to greatly enhance the product competitiveness.

    目錄 I 圖 III 表 V 第一章 緒論 1 1- 1研究動機 1 1- 2設計的相關問題 2 1- 3論文架構 2 第二章 基本原理 4 2- 1前言 4 2- 2功率元件之控制特性 4 2-2- 1理想特性 4 2-2- 2實際元件之特性 5 2- 3降壓之工作原理 6 2- 4任務周期之產生 8 2- 5切換模式降壓調整器 9 2- 6電壓模式控制原理 13 2- 7電流控制模式原理 14 2- 8電流模式控制產生的次諧波振盪 16 2- 9功率電晶體驅動電路 20 2- 10回授補償技術 22 2- 11輸出電容、電感的設計 24 第三章 設計與實現 26 3- 1架構簡介 26 3- 2設計的問題 27 3- 3功率電晶體的架構 29 3- 4偏壓產生電路 32 3- 5補償器 34 3- 6電流檢測電路 35 3- 7比較器 39 3- 8振盪和斜坡產生器 42 3- 9電壓轉電流轉換器 43 3- 10緩衝器和空白時間控制電路 46 3- 11脈衝寬度產生器 49 3- 12輸出電容、電感之設計 50 3- 13晶片佈局圖 51 第四章 模擬結果 54 4- 1電源調整率 54 4- 2負載調整率 56 4- 3綜合調整率 57 4- 4製程變異與電壓變異之模擬 59 4- 5溫度變異之模擬 62 4- 6測試考量 66 第五章 總結 68 5- 1結論 68 5- 2模擬結果 68 參考文獻 72

    [1] “Power management,” Texas Instruments Incorporated, Dallas, TX, http://www.ti.com.
    [2] 藍芽耳機中的電源管理解決方案,電子工程專輯,李家驊,2005年06月08日,(http://www.eettaiwan.com/)。
    [3] “DC/DC Converters (Inductor Based Switching Regulators),” Advanced Analogic Technologies Incorporated, http://www.analogictech.com/.
    [4] C. F. Lee and P. K. T. Mok, “On-Chip current sensing technique for CMOS monolithic switch-mode power converters,” in IEEE Int. Symp. Circuits and Systems, vol. 5, Scottsdale, AZ, pp. 265–268. May 2002.
    [5] 章紹標,高功率密度順向式DC/DC轉換器的研製,國立台灣工業技術學院電子工程技術研究所碩士學位論文,民國85年6月。
    [6] 林希哲,利用主動式箝位技術之順向式DC/DC轉換器,國立台灣工業技術學院電子工程技術研究所碩士學位論文,民國85年6月。
    [7] Muhammad H. Rashid, Power Electronics : Circuit, Devices, and Applications, 3rd ed. Prentice Hall.,2003.
    [8] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics. Norwell, MA: Kluwer, 2001.
    [9] Philip T. Krein, Elements of Power Electronics. New York Oxford, 1998.
    [10] Ned Mohan, Tore M. Undeland, and William P. Robbins, Power Electronics: Converters, Applications, and Design, John Wiley & Sons, New York, 2003.
    [11] Cheung Fai Lee and Philip K. T. Mok, “A Monolithic Current-ModeCMOS DC–DC Converter With On-Chip Current-Sensing Technique,” IEEE J. Solid-State Circuits, vol. 39, Jan. 2004.
    [12] P. Midya, M. Greuel, and P. T. Krein, “Sensorless current mode control An observer-based technique for DC–DC converters,” in Proc. IEEE Power Electronic Specialists Conf. , vol. 1, New York, NY, 1997, pp. 197–202.
    [13] Kelly, A. and Rinne, K., “Sensorless current-mode control of a digital dead-beat DC-DC converter,” In APEC, vol 3, pp.1790 – 1795, 2004.
    [14] Mattavelli. P., “Digital control of DC-DC boost converters with inductor current estimation,” In APEC, vol 1, pp.74 – 80, 2004.
    [15] T. A. Smith, S. Dimitrijev, and H. B. Harrison, “Controlling a DC–DC converter by using the power MOSFET as a voltage controlled resistor,” IEEE Trans. Circuits Syst. I, vol. 47, pp. 357–362, Mar. 2000.
    [16] Tadic. N. and Gobovic. D., ”A voltage-controlled resistor in CMOS technology using bisection of the voltage range,” IEEE Trans. Instrumentation and Measurement, vol. 50, pp. 1704 – 1710, 2001.
    [17] Yongping Fan and Smith, J.E., “On-die termination resistors with analog impedance control for standard CMOS technology,” IEEE J. Solid-State Circuits, vol. 38, pp. 361–364, 2003.
    [18] Ming-Dou Ker, Chung-Yu, and Tain-Shun Wu, “Area-Efficient Layout Design for CMOS Output Transistors,” IEEE Trans. Electron Devices, vol. 44, pp. 635 – 645. Apr. 1997.
    [19] Ming-Dou Ker, “ESD protection for CMOS ASIC in noisy environments with high-current low-voltage triggering SCR devices,” In ASIC, pp. 283 – 286, 1997.
    [20] Ker, M.-D., ”ESD protection for CMOS output buffer by using modified LVTSCR devices with high trigger current,” IEEE J. Solid-State Circuits, vol. 32, pp. 1293 – 1296, 1997.
    [21] D. A. Johns and K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, New York, 1997.
    [22] A. Yukawa, ”A CMOS 8-bit high speed A/D converter IC,” IEEE J. of Solid-State Circuits, vol. 20, pp. 775-779, June 1985.
    [23] 鄭彥誠,切換電容式二階三角積分器,國立台灣科技大學電子工程系碩士學位論文,民國95年6月。
    [24] B. Razavi, Design of Analog CMOS Integrated Circuits. Boston, MA: McGraw-Hill, 2001.
    [25] Phillip E. Allen and Douglas R. Holberg, CMOS Analog Circuit Design second edition, New York Oxford, 2002.
    [26] Kuo-Hsing Cheng, Tsung-Shen Chen, and Ching-Wen Kuo, “High accuracy current mirror with low settling time,” In MWSCAS, vol. 1, pp. 189-192, 2003.
    [27] Hogervorst. R., Tero.J.P., Eschauzier. R.G.H., and Huijsing. J.H., “A compact power-efficient 3 V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries,” IEEE J. Solid-State Circuits, vol. 29, pp. 1505 – 1531, 1994.
    [28] Cheng-Hui Chang and Chang. R.C., “A novel current sensing circuit for a current-mode control CMOS DC-DC buck converter,” In VDAT, pp. 120-123, 2005.
    [29] Lotfi. R., Taherzadeh-Sani. M., Azizi. M.Y., and Shoaei. O., “A 1-V MOSFET-only fully-differential dynamic comparator for use in low-voltage pipelined A/D converters,” In SCS, vol. 2, pp. 377-380. 2003.
    [30] Kong, Z.-H., Yeo, K.-S., and Chang. C.-H., “Design of an area-efficient CMOS multiple-valued current comparator circuit,” IEE Proceedings,
    Circuits, Devices and Systems, vol. 152, pp. 151-158, 2005.
    [31] Parlak. M., and Gurbuz. Y., “Low power, variable supply CMOS comparator,” In SIU, pp. 140-143, 2004.
    [32] Fotouhi. B., “All-MOS voltage-to-current converter,” IEEE J. Solid-State Circuits, vol. 36, pp. 147–151, 2001.
    [33] Chen. R.Y., and Tsung-Shuen Hung, “A linear CMOS voltage-to-current converter,” In ISSCS, vol. 2, pp. 677-680, 2005.
    [34] Razavi. B., “A study of phase noise in CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 31, pp. 331–343, 1996.
    [35] Imm. Q.L.S., Kordesch. A.V., and Majlis. B.Y., “An 180 nm CMOS single inverter 2.4 GHz LC oscillator,” In APACE, pp. 237-241, 2005.
    [36] Bhushan. M., Gattiker. A., Ketchen. M.B., Das. and K.K., “Ring oscillators for CMOS process tuning and variability control,” In TSM, vol. 19, pp. 10-18, 2006.
    [37] Jing. Wang, Sanchez-Sinencio. E., Maloberti. F., “Very linear ramp-generators for high resolution ADC BIST and calibration,” In MWSCAS, vol. 2, pp. 908-911, 2000.
    [38] Azais. F., Bernard. S., Bertrand. Y., Michel. X., and Renovell. M., “A low-cost adaptive ramp generator for analog BIST applications,” In VTS, pp. 266-271, 2001.
    [39] Chung-Chih Hung, Ismail. M., Halonen. K., Porra. V., “A low-voltage rail-to-rail CMOS V-I converter,” IEEE Trans. Circuits and Systems. vol. 46, pp. 816-820, 1999.
    [40] Duong. Q.-H., Nguyen. T.-K., and Lee. S.-G., “Low-voltage low-power high dB-Linear CMOS exponential function generator using highly-linear V-I converter,” In LPE, pp. 349-352, 2003.
    [41] C. Yoo, “A CMOS buffer without short-circuit power consumption,” IEEE Trans. Circuits Syst. II, vol. 47, pp. 935–937, Sept. 2000.
    [42] Kursun. V., Narendra. S.G., De. V.K., and Friedman. E.G., “Low-voltage-swing monolithic dc-dc conversion,” IEEE Trans. Circuit and Systems, vol. 51, pp. 241-248, 2004.
    [43] Vojin G. Oklobdzija, Vladimir M. Stojanovic, Dejan M. Markovic, and Nikola M. Nedovic, Digital System Clocking: High-Performance and Low-Power Aspects, Wiley-IEEE Press, 2003.
    [44] Seongmoo Heo, and Asanovic, K., “Power-Optimal Pipelining in Deep Submicron Technology,” In ISLPED, pp. 218 – 223. 2004.

    QR CODE