簡易檢索 / 詳目顯示

研究生: 唐婷鉦
Ting-Cheng Tang
論文名稱: 奈米金粒子之形狀與表面改質於皮膚穿透之研究
In Vivo Rat Skin Penetration of Gold Nanoparticles : Geometric of Particle and Surface Modification
指導教授: 蔡協致
Hsieh-Chih Tsai
口試委員: 高震宇
Chen yu Kao
蕭百芬
Pa fan Hsiao
陳玉暄
Yu shuan Chen
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 84
中文關鍵詞: 奈米金粒子化學促進劑皮膚穿透性
外文關鍵詞: gold nanoparticle, chemical enhancer, skin penetration
相關次數: 點閱:312下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米科技的蓬勃發展之下,皮膚受到美容或保養產品中奈米粒子暴露的風險也相對地提高,目前已有研究結果顯示,奈米微粒確實可直接穿透皮膚進入真皮層,隨著奈米科技進步,各式各樣不同型態奈米粒子被設計出來,進一步探討不同形狀奈米粒子於皮膚穿透度上的影響更顯其重要性。
    本研究以奈米金球及金棒作為奈米粒子探討皮膚之穿透性,引入Poly(ethylene glycol) 2-mercaptoethyl ether acetic acid (SH-PEG-COOH)於奈米金與化學促進劑之間,PEG一端是硫基,硫基與金具有極佳的鍵結能力,除了可提高修飾後的奈米金粒子之穩定性,其具有改變角質層表面結構之作用;PEG另一端則可與皮膚穿透性之化學促進劑(Oleylamine, OAm)結合,探討PEG與OAm鍵結穿透能力上之差異,並以核磁共振光譜儀及傅利葉紅外光儀,確認高分子材料之結構,而金表面修飾以穿透式電子顯微鏡、紅外線光譜、傅利葉紅外光儀及表面電位上判別。此外,為了有效利用共軛焦顯微鏡分析奈米金粒子之穿透性,近一步將Fluorescein isothiocyanate (FITC) 修飾在奈米金表面。
    由於奈米金粒子具有消光效應,僅使用螢光顯微鏡作為判斷依據是無法準確地知道奈米金粒子的穿透情形,因此結合共軛焦顯微鏡及穿透式電子顯微鏡觀察組織切片,綜合兩者之實驗結果而得奈米金粒子的形狀、改質前後於大鼠皮膚穿透之效率、途徑及累積情形。


    Nanoparticles are being used in multiple applications, ranging from biomedical and skin care products (e.g., sunscreen) through to industrial manufacturing processes (e.g., water purification). The increase in exposure has led to multiple reports on nanoparticle penetration. However, the correlation between gold nanoparticle shape and its penetration with chemical enhancers through the skin is poorly understood.
    Purpose of the present work is to study the effect of particle shape and surface modification on penetration of gold nanoparticles through rat skin. Besides flexible shape adjustment, the great popularity of gold nanoparticles originates also from their straightforward surface modification by formation of self-assembling monolayers (SAM) with thiol-containing functional group. Thus, we conjugated Poly(ethylene glycol) 2-mercaptoethyl ether acetic acid (SH-PEG-COOH) with the chemical enhancer (Oleylamine, OAm) and the PEG molecules attach to the gold nanoparticles surface through a sulfur-gold atom bond. The surface modification were characterized by UV-visible spectrophotometry, transmission electron microscopy, zeta potential analysis, and fourier transform infrared spectroscopy.
    Skin penetration of gold particles was observed by using confocal microscopy and transmission electron microscopy, the images show that rat skin revealed accumulation of gold nanoparticles in dermis of skin and the penetration amount of modification gold nanoparticles were higher than bare particles. As a result, the penetration of gold nanoparticle through skin can be enhanced by chemical penetration enhancement.

    摘要 I Abstract II 總目錄 III 圖目錄 V 表目錄 VIII 第一章 前言 1 1.1研究動機和目的 1 1.2研究架構 3 第二章 文獻回顧 4 2.1奈米金粒子 4 2.2奈米金粒子介紹 5 2.3奈米金粒子之特性 7 2.3.1表面電漿共振原理 7 2.4奈米金粒子修飾 10 2.4.1自組裝單分子層(self-assembled monolayers, SAMs) 10 2.4.2醯胺反應 13 2.5皮膚構造及經皮吸收 14 2.5.1皮膚構造 14 2.5.2皮膚吸收途徑 17 2.6增強皮膚穿透效率 18 2.6.1化學促進劑之作用 19 2.7共軛焦顯微鏡(Confocal Microscope)觀察 21 2.7.1共軛焦顯微鏡原理 22 2.7.2螢光標的 23 3.1 實驗藥品及耗材 24 3.2實驗儀器 25 3.3實驗流程圖 26 3.4聚乙二醇鍵結油胺 27 3.4.1 實驗步驟 27 3.4.2 流程圖 28 3.5 奈米金粒子表面改質 28 3.6奈米金粒子表面改質之特性分析 29 3.6.1穿透式電子顯微鏡(Transmission Electron Microscopy, TEM)觀察 29 3.6.2紫外光/紅外光(UV/VIS)光譜分析 29 3.6.3傅立葉紅外光光譜儀(Fourier Transform Infrared, FT-IR) 29 3.6.4 介面電位分析儀(Zeta Potential) 29 3.7 奈米金粒子螢光訊號 30 3.7.1 螢光光譜分析(Fluorescence Spectrometry) 30 3.8 大鼠皮膚穿透實驗 31 3.9觀察奈米金粒子皮膚穿透情形 32 3.9.1雷射共軛焦顯微鏡(Confocal Laser Scanning Microscopy)樣品製備 32 3.9.2 穿透式電子顯微鏡樣品製備 33 第四章 結果與討論 34 4.1聚乙二醇鍵結油胺之合成鑑定 34 4.1.1 PEG-OAm之傅立葉轉換紅外線光譜分析 34 4.1.2 PEG-OAm之氫譜分析 35 4.2 奈米金粒子特性分析 39 4.2.1 大小及尺寸分布 39 4.2.2光學性質 40 4.3奈米金球表面改質之結果分析 41 4.3.1奈米金球改質之光學性質及特性分析 41 4.3.2 奈米金球表面改質之傅立葉轉換紅外線光譜分析 46 (A) Gold Nanosphere 5nm 46 (B) Gold Nanosphere 10nm 48 4.4奈米金棒表面改質分析 50 4.4.1 奈米金棒改質之光學性質及特性分析 50 4.4.2 奈米金棒表面改質之傅立葉轉換紅外線光譜分析 53 4.5奈米金粒子之螢光訊號 55 4.6奈米金粒子之皮膚穿透實驗 57 4.6.1 大鼠皮膚切片 57 4.6.2共軛焦顯微鏡分析奈米金球之皮膚穿透狀況 58 (A) Gold Nanosphere 5nm 58 (B) Gold Nanosphere 10nm 60 4.6.3共軛焦顯微鏡分析奈米金棒之皮膚穿透狀況 62 63 4.6.4電子顯微鏡分析奈米金球之皮膚穿透狀況 64 (A) Gold Nanosphere 5nm 64 (B) Gold Nanosphere 10nm 66 4.6.5電子顯微鏡分析奈米金棒之皮膚穿透狀況 68 第五章 結論 70 第六章 參考文獻 72

    [1] A. C. Watkinson, A. L. Bunge, J. Hadgraft, and M. E. Lane, "Nanoparticles do not penetrate human skin--a theoretical perspective," Pharm Res, vol. 30, pp. 1943-6, Aug 2013.
    [2] R. M. Khayrullin, G. S. Terentyuk, M. V. Savenkova, and E. A. Genina, "The Technique of Enhancing the Transdermal Penetration for the Gold Nanoparticles and Perspectives of Application," Journal of Cancer Therapy, vol. 04, pp. 48-55, 2013.
    [3] M. G. C. C. J. C. L. G.-F. A. A. E. Casals, "Nanoparticles for cosmetics. How safe is safe?," research reviews, vol. 4, 2008.
    [4] G. Oberdorster, E. Oberdorster, and J. Oberdorster, "Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles," Environmental Health Perspectives, vol. 113, pp. 823-839, 2005.
    [5] T. W. Prow, J. E. Grice, L. L. Lin, R. Faye, M. Butler, W. Becker, et al., "Nanoparticles and microparticles for skin drug delivery," Adv Drug Deliv Rev, vol. 63, pp. 470-91, May 30 2011.
    [6] A. C. Williams and B. W. Barry, "Penetration enhancers," Advanced Drug Delivery Reviews, vol. 56, pp. 603-618, 3/27/ 2004.
    [7] M. Jennifer, "Nanoparticle Technology as a Double-Edged Sword: Cytotoxic, Genotoxic and Epigenetic Effects on Living Cells," Journal of Biomaterials and Nanobiotechnology, vol. 04, pp. 53-63, 2013.
    [8] H. I. Labouta, S. Thude, and M. Schneider, "Setup for investigating gold nanoparticle penetration through reconstructed skin and comparison to published human skin data," J Biomed Opt, vol. 18, p. 061218, Jun 2013.
    [9] F. L. Filon, M. Crosera, G. Adami, M. Bovenzi, F. Rossi, and G. Maina, "Human skin penetration of gold nanoparticles through intact and damaged skin," Nanotoxicology, vol. 5, pp. 493-501, Dec 2011.
    [10] D. C. Liu, A. P. Raphael, D. Sundh, J. E. Grice, H. Peter Soyer, M. S. Roberts, et al., "The Human Stratum Corneum Prevents Small Gold Nanoparticle Penetration and Their Potential Toxic Metabolic Consequences," Journal of Nanomaterials, vol. 2012, pp. 1-8, 2012.
    [11] T. Mironava, M. Hadjiargyrou, M. Simon, V. Jurukovski, and M. H. Rafailovich, "Gold nanoparticles cellular toxicity and recovery: effect of size, concentration and exposure time," Nanotoxicology, vol. 4, pp. 120-37, Mar 2010.
    [12] M. Das, K. H. Shim, S. S. A. An, and D. K. Yi, "Review on gold nanoparticles and their applications," Toxicology and Environmental Health Sciences, vol. 3, pp. 193-205, 2012.
    [13] G. Sonavane, K. Tomoda, A. Sano, H. Ohshima, H. Terada, and K. Makino, "In vitro permeation of gold nanoparticles through rat skin and rat intestine: effect of particle size," Colloids Surf B Biointerfaces, vol. 65, pp. 1-10, Aug 1 2008.
    [14] T. G. Weibo Cai, Hao Hong, Jiangtao Sun, "Applications of gold nanoparticles in cancer nanotechnology," Nanotechnology Science and Applications, 2008.
    [15] P. Rivera Gil, D. Huhn, L. L. del Mercato, D. Sasse, and W. J. Parak, "Nanopharmacy: Inorganic nanoscale devices as vectors and active compounds," Pharmacol Res, vol. 62, pp. 115-25, Aug 2010.
    [16] M. Grzelczak, J. Perez-Juste, P. Mulvaney, and L. M. Liz-Marzan, "Shape control in gold nanoparticle synthesis," Chem Soc Rev, vol. 37, pp. 1783-91, Sep 2008.
    [17] L. M. L.-M. J. Perez-Just, S. Carnie, D. Y. C. Chan andP. Mulvaney, "Electric-Field-Directed Growth of Gold Nanorods in Aqueous Surfactant Solutions," Advanced Functional Materials, vol. 14, pp. 571-579, 2004.
    [18] M.-C. D. a. D. Astruc, "Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology " Chem. Rev., vol. 104, pp. 293-346, 2004.
    [19] S. L. S. L. a. N. J. Halas, "Nano-optics from sensing to waveguiding," nature photonics, vol. 1, pp. 641-648, 2007.
    [20] X. Huang, S. Neretina, and M. A. El-Sayed, "Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications," Advanced Materials, vol. 21, pp. 4880-4910, 2009.
    [21] F. L. a. U.Walschus, "Immobilization of Oligonucleotides for Biochemical Sensing by Self-Assembled Monolayers: Thiol-Organic Bonding on Gold and Silanization on Silica Surfaces," Top Curr Chem, vol. 260, pp. 37-56, 2005.
    [22] A. Ulman, "Formation and Structure of Self-Assembled Monolayers," Chem. Rev., vol. 96, pp. 1533-1554, 1996.
    [23] M. Tanaka, T. Hayashi, and S. Morita, "The roles of water molecules at the biointerface of medical polymers," Polymer Journal, vol. 45, pp. 701-710, 2013.
    [24] Z. Wang and L. Ma, "Gold nanoparticle probes," Coordination Chemistry Reviews, vol. 253, pp. 1607-1618, 2009.
    [25] E. Katz and I. Willner, "Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications," Angew Chem Int Ed Engl, vol. 43, pp. 6042-108, Nov 19 2004.
    [26] S. K. Vashist, "Comparison of 1-Ethyl-3-(3-Dimethylaminopropyl) Carbodiimide Based Strategies to Crosslink Antibodies on Amine-Functionalized Platforms for Immunodiagnostic Applications," Diagnostics, vol. 2, pp. 23-33, 2012.
    [27] J. Bart, R. Tiggelaar, M. Yang, S. Schlautmann, H. Zuilhof, and H. Gardeniers, "Room-temperature intermediate layer bonding for microfluidic devices," Lab Chip, vol. 9, pp. 3481-8, Dec 21 2009.
    [28] S. MacNeil, "Progress and opportunities for tissue-engineered skin," Nature, vol. 445, pp. 874-80, Feb 22 2007.
    [29] J. Juan, I. Marlen, C. Luisa, R. Diaz, A. Luisa, and N. Casas, "Nanocarrier Systems for Transdermal Drug Delivery," 2012.
    [30] M. R. Prausnitz and R. Langer, "Transdermal drug delivery," Nat Biotechnol, vol. 26, pp. 1261-8, Nov 2008.
    [31] O. S. Hikima T, Shirouzu K, Tojo K., "Mechanisms of Synergistic Skin Penetration by Sonophoresis and Iontophoresis," Biol Pharm Bull, vol. 32, pp. 905-909, 2009.
    [32] E. W. S. Roderick B. Walker, "The role of percutaneous penetration enhancers," Advanced Drug Delivery Reviews, vol. 18, pp. 295-301, 1995.
    [33] C. M. S. Inayat Bashir Pathan, "Chemical Penetration Enhancers for Transdermal Drug Delivery Systems," Tropical Journal of Pharmaceutical Research, vol. 8, pp. 173-179, 2009.
    [34] 楊俊宏, "共軛焦顯微鏡(Confocal Microscope)簡介," TACTRI News, vol. 7, 2008.
    [35] W. B. Amos and J. G. White, "How the Confocal Laser Scanning Microscope entered Biological Research," Biology of the Cell, vol. 95, pp. 335-342, 2003.
    [36] T. L. S. Zul Merican, Craig J. Hawker, Peter M. Fredericks, and Idriss Blakey, "Self-Assembly and Encoding of Polymer-Stabilized Gold Nanoparticles with Surface-Enhanced Raman Reporter Molecules," American Chemical Society, vol. 23, pp. 10539-10545, 2007.
    [37] P. J. D. L.H.H. Olde Damink, M.J.A. van Luyn, P.B. van Wachem, P. Nieuwenhuis and J. Feijen, "Cross-linking of dermal sheep collagen using a water-soluble carbodiimide," Biomaterials, vol. 17, pp. 765-773, 1996.
    [38] K. G. M. Menelaou , K. Simeonidis and C. Dendrinou-Samara "Evaluation of nickel ferrite nanoparticles coated with oleylamine by NMR relaxation measurements and magnetic hyperthermia," Royal Society of Chemistry, vol. 43, pp. 3626-3636, 2013.
    [39] F. G. Limei Ao, Bifeng Pan, Rong He, and Daxiang Cui, "Fluoroimmunoassay for Antigen Based on Fluorescence Quenching Signal of Gold Nanoparticles," Anal. Chem., vol. 78, pp. 1104-1106, 2006.
    [40] S. Mourdikoudis and L. M. Liz-Marzan, "Oleylamine in Nanoparticle Synthesis," Chemistry of Materials, vol. 25, pp. 1465-1476, 2013.
    [41] S. L. a. M. A. El-Sayed, "Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles," J. Phys. Chem., vol. 103, pp. 4212-4217, 1999.
    [42] W. Shi, J. Casas, M. Venkataramasubramani, and L. Tang, "Synthesis and Characterization of Gold Nanoparticles with Plasmon Absorbance Wavelength Tunable from Visible to Near Infrared Region," ISRN Nanomaterials, vol. 2012, pp. 1-9, 2012.
    [43] A. C. T. Michael J. Hostetler, and Royce W. Murray, "Dynamics of Place-Exchange Reactions on Monolayer-Protected Gold Cluster Molecules," Langmuir, vol. 15, pp. 3782-3789, 1999.
    [44] N. N. a. A. Chilkoti, "A Colorimetric Gold Nanoparticle Sensor To Interrogate Biomolecular Interactions in Real Time on a Surface," Anal. Chem., vol. 74, pp. 504-509, 2002.
    [45] J. Wang, J. Moore, S. Laulhe, M. Nantz, S. Achilefu, and K. A. Kang, "Fluorophore-gold nanoparticle complex for sensitive optical biosensing and imaging," Nanotechnology, vol. 23, p. 095501, Mar 9 2012.
    [46] J. L. Adam Yuh Lin, Adham Sean Bear, Joseph Keith Young, Phillip Eckels, Laureen Luo, Aaron Edward Foster and Rebekah Anna Drezek, "High-density sub-100-nm peptide-gold nanoparticle complexes improve vaccine presentation by dendritic cells in vitro.," Nanoscale Research Letters, vol. 8, 2013.
    [47] S. Narayan, A. Rajagopalan, J. S. Reddy, and A. Chadha, "BSA binding to silica capped gold nanostructures: effect of surface cap and conjugation design on nanostructure–BSA interface," RSC Advances, vol. 4, p. 1412, 2014.
    [48] J. Manson, D. Kumar, B. J. Meenan, and D. Dixon, "Polyethylene glycol functionalized gold nanoparticles: the influence of capping density on stability in various media," Gold Bulletin, vol. 44, pp. 99-105, 2011.
    [49] X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, "Plasmonic photothermal therapy (PPTT) using gold nanoparticles," Lasers Med Sci, vol. 23, pp. 217-28, Jul 2008.
    [50] J. Vonnemann, N. Beziere, C. Bottcher, S. B. Riese, C. Kuehne, J. Dernedde, et al., "Polyglycerolsulfate functionalized gold nanorods as optoacoustic signal nanoamplifiers for in vivo bioimaging of rheumatoid arthritis," Theranostics, vol. 4, pp. 629-41, 2014.
    [51] J. Liu, C. Detrembleur, M.-C. De Pauw-Gillet, S. Mornet, E. Duguet, and C. Jerome, "Gold nanorods coated with a thermo-responsive poly(ethylene glycol)-b-poly(N-vinylcaprolactam) corona as drug delivery systems for remotely near infrared-triggered release," Polymer Chemistry, vol. 5, p. 799, 2014.
    [52] L. Wang, X. Jiang, Y. Ji, R. Bai, Y. Zhao, X. Wu, et al., "Surface chemistry of gold nanorods: origin of cell membrane damage and cytotoxicity," Nanoscale, vol. 5, pp. 8384-91, Sep 21 2013.
    [53] I. Y. Yanina, V. V. Tuchin, N. A. Navolokin, O. V. Matveeva, A. B. Bucharskaya, G. N. Maslyakova, et al., "Fat tissue histological study at indocyanine green-mediated photothermal/photodynamic treatment of the skin in vivo," J Biomed Opt, vol. 17, p. 058002, May 2012.
    [54] X. Liu, J. E. Grice, J. Lademann, N. Otberg, S. Trauer, A. Patzelt, et al., "Hair follicles contribute significantly to penetration through human skin only at times soon after application as a solvent deposited solid in man," Br J Clin Pharmacol, vol. 72, pp. 768-74, Nov 2011.
    [55] S. N. H. Shah, M. A. Tahir, A. Safdar, R. Riaz, Y. Shahzad, M. Rabbani, et al., "Effect of Permeation Enhancers on the Release Behavior and Permeation Kinetics of Novel Tramadol Lotions," Tropical Journal of Pharmaceutical Research, vol. 12, 2013.
    [56] C. Xue, Y. Xue, L. Dai, A. Urbas, and Q. Li, "Size- and Shape-Dependent Fluorescence Quenching of Gold Nanoparticles on Perylene Dye," Advanced Optical Materials, vol. 1, pp. 581-587, 2013.

    無法下載圖示 全文公開日期 2019/07/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE