簡易檢索 / 詳目顯示

研究生: 吳宗翰
Tsung-Han Wu
論文名稱: 積層製造椎籠於不同結構設計與複合材料組合之生醫力學分析
Biomechanical Analysis of Additive Manufactured Cages with Different Structural Designs and Material Combinations Using Finite Element Methods
指導教授: 趙振綱
Ching-Kong Chao
徐慶琪
Ching-Chi Hsu
口試委員: 釋高上
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 96
中文關鍵詞: 椎間盤受損後方腰椎融合術鄰近節段退化椎籠後方固定系統有限元素分析法
外文關鍵詞: Damaged disc, Posterior lumbar interbody fusion, Adjacent segment degeneration, Cage, Posterior fixation system, Finite element analysis
相關次數: 點閱:234下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 造成脊椎傷害的原因可能為年齡增長的老化現象、長期姿勢不良或是受到外部力量所導致,以上原因將使得椎間盤受損而造成椎間不穩定,甚至壓迫周圍神經使病患產生疼痛感,因此後方椎間融合術為較常見的治療方式。但臨床上的術後追蹤觀察期發現,由於手術節段之活動度喪失所導致的補償現象,進而造成鄰近節段退化現象的產生。近年來由於3D列印技術的蓬勃發展,因此本研究針對植入物椎籠的部分,將考慮到形狀優化、複合材料與孔隙率結構的設計,並搭配不同後方固定系統來進行比較分析,然而目前少有文獻針對上述椎籠設計有完整之探討,因此本研究希望先藉由電腦輔助工程-有限元素分析的方法,找到既能維持原先脊椎的穩定度,又能提供病患術後良好活動度的植入物選擇。
    本研究將使用T10-S1多節段之脊椎模型,並植入椎籠與後方固定器來進行有限元素分析的評估,假設手術節段處位於脊椎L3-L4處,針對椎籠本身不同材料比例的選擇、不同的孔隙率設計以及搭配不同的後方固定系統,在前彎、後彎、側彎、扭轉四種不同運動方向情況下,對各節椎間旋轉角度、椎間盤應力分佈、椎弓根骨螺絲應力分佈等生物力學特性進行結果比較。
    分析結果發現,植入物為全鈦合金材料與無孔隙率設計的椎籠,並搭配傳統剛性後方固定系統時,整體剛性最高,雖然能夠達到良好的術後脊椎穩定效果,但在鄰近節段處之補償現象也更加明顯,而加速鄰近節段退化與椎弓根骨螺絲斷裂的風險;相反的如果植入物為複合材料比例(25%Ti-75%PEEK)與高孔隙率設計的椎籠,並搭配Dynesys動態後方固定系統時,其椎間旋轉角度與鄰近節椎間盤應力皆為最接近完整脊椎情況,最終本研究將能夠使醫生了解積層製造椎籠的生醫力學特性。


    Posterior lumbar interbody fusion (PLIF) has been the most commonly used surgical method for treating damaged disc which caused by human aging、long-term bad posture or external force. But many clinical studies have showed that adjacent segment degeneration was found during the tracking observation period. In recent years, due to the flourishing development of 3D printing technology, this study will focus on the design of cage which included the shape optimum design、material selection and porous design. Each cage design will also do some simulation comparison with different posterior fixation systems. However, no research investigated on the cage design for spine motion and adjacent segment. The purpose of this study was to find the best implant design which can maintain stabilizing effect and provide good postoperative activity for patients using finite element analysis (FEM).
    A 3-D nonlinear finite element model of the T10-S1 spine with cage and posterior fixation system were developed in this study. To simulate the bone fusion surgery, the cage was inserted into the L3-L4. The loading cases of flexion、extension、lateral bending and axial rotation were considered. In post-processing, intersegmental rotation、disc stress and pedicle screw stress were calculated at implant level and adjacent level.
    The results showed that all Ti alloy and no porous cage with rigid fixation system can achieve good stability. However, it will also increase the risk of adjacent segment degeneration and pedicle screw breakage. Relatively, the intersegmental rotation and disc stress of the composite materials (25%Ti-75%PEEK) and high porosity cage with Dynesys dynamic fixation system are very close to intact spine situation. Finally, this study could help surgeons to understand the biomechanical performances of additive manufactured cages.

    中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 IX 表目錄 XIII 第1章 緒論 - 1 1.1 研究動機 - 1 1.2 脊椎之解剖生理學 - 1 1.2.1 椎體之生物力學特性 - 3 1.2.2 椎間盤之生物力學特性 - 4 1.2.3 椎體韌帶之生物力學特性 - 4 1.3 腰椎之病理 - 5 1.3.1 椎體受損 - 6 1.3.2 椎間盤退化 - 7 1.3.2.1 椎間盤突出 - 8 1.3.2.2 椎管狹窄 - 8 1.3.2.3 椎間滑脫 - 9 1.4 腰椎植入物介紹 - 10 1.4.1 人工椎間盤 - 10 1.4.1.1 核心置換型 - 10 1.4.1.2 全人工椎間盤置換型 - 11 1.4.2 融合系統 - 12 1.4.3 動態穩定系統 - 14 1.4.3.1 棘突間撐開器 - 14 1.4.3.2 椎弓根骨螺絲系統 - 15 1.5 文獻回顧 - 18 1.5.1 後方腰椎融合術之併發症 - 18 1.5.2 鄰近節退化之問題 - 19 1.5.3 複合材料椎籠之生物力學分析 - 20 1.5.4 形狀優化設計-基因演算法 - 21 1.5.5 動態固定系統發展及臨床結果 - 23 1.5.6 動態固定系統之生物力學體外試驗回顧 - 24 1.5.7 動態固定系統之有限元素分析回顧 - 24 1.6 研究目的 - 27 1.7 本文架構 - 28 第2章 材料與方法 - 29 2.1 有限元素法介紹 - 30 2.2 模型結構建立 - 31 2.2.1 完整脊椎模型 - 31 2.2.2 植入物模型 - 31 2.2.3 完整胸腰椎植入後方固定系統之模型 - 34 2.3 有限元素分析 - 35 2.3.1 完整胸腰椎有限元素模型 - 35 2.3.2 材料參數設定 - 36 2.3.3 介面接觸條件設定 - 39 2.3.4 網格設定 - 40 2.3.5 邊界及負載條件設定 - 42 2.3.6 收斂性分析 - 44 2.4 脊椎之生物力學分析 - 45 2.4.1 整體角度轉換位移 - 45 2.4.2 椎間旋轉角度計算 - 47 第3章 結果 - 49 3.1 收斂性分析 - 49 3.1.1 椎間盤之收斂性分析 - 50 3.1.2 植入物椎籠之收斂性分析 - 53 3.2 完整脊椎模型驗證 - 55 3.3 不同材料比例椎籠之結果分析 - 58 3.3.1 各節之椎間旋轉角度 - 58 3.3.2 椎弓根骨螺絲之應力 - 68 3.4 不同孔隙率設計椎籠之結果分析 - 69 3.4.1 各節之椎間旋轉角度 - 69 3.4.2 椎弓根骨螺絲之應力 - 74 3.5 不同螺桿材料之結果分析 - 75 3.5.1 各節之椎間旋轉角度 - 75 3.5.2 椎弓根骨螺絲之應力 - 80 3.5.3 鄰近節段椎間盤之應力 - 81 第4章 討論 - 84 4.1 研究結果之探討 - 84 4.1.1 各節椎間旋轉角度 - 84 4.1.2 鄰近節補償現象 - 85 4.1.3 椎弓根骨螺絲應力 - 86 4.2 研究限制 - 87 第5章 結論與未來展望 - 89 5.1 結論 - 89 5.2 未來展望 - 90 參考文獻 - 92 作者簡介 - 96

    [1]台灣脊椎中心 http://taiwanspinecenter.com.tw/
    [2]A. P. Schnuerer, P. A. Julio Gallego, M. D. Cristie Manuel, Anatomy of the
    Spine & Structures.
    [3]洪一智,「腰椎脊突間撐開器的有限元素分析」國立中央大學機械工程研究所碩士論文
    [4]周姝妤,「椎弓根骨螺絲固定系統於治療腰椎椎間盤退化之生物力學研究」國立台灣科技大學機械工程研究所碩士論文
    [5]"<Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction.pdf>."
    [6]Anna-Mart Kruger Physiotherapists http://www.physionam.com/index.html
    [7]iSpineCare http://www.ispinecare.com/index.html
    [8]"<What is Intervertebral Disc Degeneration and What Causes It.pdf>."
    [9]J. P. G. Urban and S. Roberts, Arthritis Research & Therapy, vol. 5, p. 120,
    2003.
    [10]mild http://www.mildprocedure.com/what-is-lss.html
    [11]Spine-health http://www.spine-health.com/
    [12]H. Serhan, D. Mhatre, H. Defossez, and C. M. Bono, "Motion-preserving technologies for degenerative lumbar spine: The past, present, and future
    horizons," SAS Journal, vol. 5, pp. 75-89, 9// 2011.
    [13]V. Palepu, M. Kodigudla, and V. K. Goel, "Biomechanics of disc degeneration,"Adv Orthop, vol. 2012, p. 726210, 2012.
    [14]C. Barrey, "Pedicle screw-based dynamic stabilization devices for the lumbar
    spine," ArgoSpine News & Journal, vol. 21, pp. 78-84, 2009/06/01 2009.
    [15]C. A. Dickman, MD, Internal fixation and fusion of the lumbar spine using
    threaded interbody cages. Barrow Quarterly-Vol. 13, No. 3, 1997
    [16]ManojKrishna http://www.spinalsurgeon.com/treatments/surgicaltreatments/plif/
    [17]X. Courville, J. Torretti, and D. K. Sengupta, "Dynamic Stabilization: Principles and Current Clinical Practice," Seminars in Spine Surgery, vol. 20, pp. 146-153, 2008.
    [18]S. Agazzi, A. Reverdin, and D. May, "Posterior lumbar interbody fusion with cages: an independent review of 71 cases," Journal of Neurosurgery: Spine, vol. 91, pp. 186-192, 1999.
    [19]P. Enker and A. D. Steffee, "Interbody Fusion and Instrumentation," Clinical
    Orthopaedics and Related Research, vol. 300, pp. 90-101, 1994.
    [20]C. K. Lee, "Accelerated Degeneration of the Segment Adjacent to a Lumbar Fusion," Spine, vol. 13, pp. 375-377, 1988.
    [21]G. Ghiselli, J. C. Wang, N. N. Bhatia, W. K. Hsu, and E. G. Dawson, Adjacent Segment Degeneration in the Lumbar Spine vol. 86, 2004.
    [22]P. Park, H. J. Garton, V. C. Gala, J. T. Hoff, and J. E. McGillicuddy, "Adjacent Segment Disease after Lumbar or Lumbosacral Fusion: Review of the Literature," Spine, vol. 29, pp. 1938-1944, 2004.
    [23]Y. Aota, K. Kumano, and S. Hirabayashi, "Postfusion Instability at the Adjacent Segments After Rigid Pedicle Screw Fixation for Degenerative Lumbar Spinal Disorders," Journal of Spinal Disorders & Techniques, vol. 8, pp. 464-473, 1995.
    [24]A. Marsol-Puig, R. Huguet-Comelles, J. Escala-Arnau, and J. Giné-Gomà, "Incidence and risk factors of adjacent disc degeneration after lumbar fusion," Revista Española de Cirugía Ortopédica y Traumatología (English Edition), vol. 55, pp. 170-174, 2011.
    [25]W. M. S. Charles Malveaux and A. D. Sharan, "Adjacent Segment Disease After
    Lumbar Spinal Fusion: A Systematic Review of the Current Literature,"Seminars
    in Spine Surgery, vol. 23, pp. 266-274, 2011.
    [26]Y. Shikinami and M. Okuno, "Mechanical evaluation of novel spinal interbody fusion cages made of bioactive, resorbable composites," Biomaterials, vol. 24, pp. 3161-3170, 2003.
    [27]Y. Li, Z. G. Wu, X. K. Li, Z. Guo, S. H. Wu, Y. Q. Zhang, et al., "A polycaprolactone-tricalcium phosphate composite scaffold as an autograft-free spinal fusion cage in a sheep model," Biomaterials, vol. 35, pp. 5647-59, Jul 2014.
    [28]C. C. Hsu, "Shape optimization for the subsidence resistance of an interbody device using simulation-based genetic algorithms and experimental validation," J Orthop Res, vol. 31, pp. 1158-63, Jul 2013.
    [29]T. M. Stoll, G. Dubois, and O. Schwarzenbach, "The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system," Eur Spine J, vol. 11 Suppl 2, pp. S170-8, Oct 2002.
    [30]D. Grob, A. Benini, A. Junge, and A. F. Mannion, "Clinical Experience With the Dynesys Semirigid Fixation System for the Lumbar Spine: Surgical and Patient-Oriented Outcome in 50 Cases After an Average of 2 Years," Spine, vol. 30, pp. 324-331, 2005.
    [31]M. Bothmann, E. Kast, G. J. Boldt, and J. Oberle, "Dynesys fixation for lumbar spine degeneration," Neurosurg Rev, vol. 31, pp. 189-96, Apr 2008.
    [32]W. Schmoelz, J. F. Huber, T. Nydegger, L. Claes, and H. J. Wilke, "Influence of a dynamic stabilisation system on load bearing of a bridged disc: an in vitro study of intradiscal pressure," Eur Spine J, vol. 15, pp. 1276-85, Aug 2006.
    [33]K. S. Delank, E. Gercek, S. Kuhn, F. Hartmann, H. Hely, M. Rollinghoff, et al., "How does spinal canal decompression and dorsal stabilization affect segmental mobility? A biomechanical study," Arch Orthop Trauma Surg, vol. 130, pp. 285-92, Feb 2010.
    [34]A. Rohlmann, N. K. Burra, T. Zander, and G. Bergmann, "Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis," Eur Spine J, vol. 16, pp. 1223-31, Aug 2007.
    [35]D. S. Shin, K. Lee, and D. Kim, "Biomechanical study of lumbar spine with dynamic stabilization device using finite element method," Computer-Aided Design, vol. 39, pp. 559-567, 2007.
    [36]T. A. Jahng, Y. E. Kim, and K. Y. Moon, "Comparison of the biomechanical effect of pedicle-based dynamic stabilization: a study using finite element analysis," Spine J, vol. 13, pp. 85-94, Jan 2013.
    [37]W. R. Sears, I. G. Sergides, N. Kazemi, M. Smith, G. J. White, and B. Osburg, "Incidence and prevalence of surgery at segments adjacent to a previous posterior lumbar arthrodesis," Spine J, vol. 11, pp. 11-20, Jan 2011.
    [38]W. R. S. Hudson, J. E. Gee, J. B. Billys, and A. E. Castellvi, "Hybrid dynamic stabilization with posterior spinal fusion in the lumbar spine," SAS Journal, vol. 5, pp. 36-43, 6// 2011.

    QR CODE