簡易檢索 / 詳目顯示

研究生: 魏靖珊
Jing-Shan Wei
論文名稱: 以三維解耦分析方法探討開挖角隅效應與鄰房結構勁度對角變量之影響
A Study of Influence on Angular Distortion of Excavation-Induced Corner Effect and Structural Stiffness of Adjacent Building Using 3D Decoupled Analysis Method
指導教授: 林宏達
Horn-Da Lin
口試委員: 陳正誠
Cheng-Cheng Chen
歐章煜
Chang-Yu Ou
謝佑明
Yo-Ming Hsieh
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 181
中文關鍵詞: 三維解耦分析方法開挖角變量結構勁度角隅效應
外文關鍵詞: 3D Decouple Analysis Method, Excavation, Angular Distortion, Structural Stiffness, Corner Effect
相關次數: 點閱:160下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究團隊過去已成功將三維解耦分析方法應用於開挖引致之不同基礎型式及鄰房位置之鄰房損害之分析及探討,但對於工程實務上常量測之層間角變量與實際反應結構損害之跨間角變量間之關係,仍需進一步釐清及討論。因此本研究分為兩大主軸,第一項主軸為將獨立基腳鄰房結構物置於開挖區中心及開挖角隅區之間三種位置,並根據解耦分析結果,探討開挖角隅效應對鄰房角變量及鄰房損害之影響。第二項主軸以板式筏基及筏基為基礎之鄰房結構物作為研究對象,並以增加樓層數的方式改變其結構勁度,包括4F、8F及12F結構物。
第一項主軸之研究結果顯示,三種鄰房位置確實會受角隅效應影響而使開挖引致之地表沉陷及基礎垂直差異沉陷減小,而三者之基礎角變量大約等於跨間角變量,但層間角變量仍不等於基礎角變量。此外隨著鄰房位置逐漸向開挖角隅區靠近,鄰房之短軸損害可能反而提高。影響其損害之因素,除了角變量也需同時考量平行開挖區地表沉陷曲線之曲率影響,才能更加完善地評估開挖引致之鄰房損害潛勢。
第二項主軸之研究成果顯示,鄰房結構勁度增加,可使開挖引致之各樓層之層間角變量逐漸趨於一致,以及使層間角變量與跨間角變量之差異減小,但層間角變量仍不足以代表跨間角變量。因此,工程上使用層間角變量評估鄰房損害的做法,可能低估或誤判實際之結構損害潛勢。此外結構勁度提高能使上部結構之損害減小,但高樓層結構物之損害反而可能發生於地下室及基礎位置,值得工程實務參考。


A Three-Dimensional Decouple Analysis Method (3D DAM) has been successfully used to study the excavation-induced adjacent building damage behavior for different types of foundations and different adjacent building locations in recent years by previous researchers of our research team. However, further clarification and discussion are needed for the relationship between the measured story drift ratio and span drift ratio, which is reflecting the structural damage in engineering. This study is mainly divided into two research parts. The first part is to place the spread footing adjacent building in three locations between the center of the excavation area and the excavation corner area. According to the results of the 3D DAM, the influence of the excavation corner effect on the angular distortion behavior of the adjacent building and the damage to the adjacent building was studied. The second part is to adopt a mat foundation and raft foundation for the adjacent building as the research object. And changes its structural stiffness by increasing the number of floors, including 4F, 8F, and 12F structures.
The results of the first part showed that the three adjacent building locations are indeed affected by the corner effect, which reduces the ground settlement caused by excavation and the vertical movement foundation, and the bay angular distortion of the three is approximately equal to the span drift ratio. However, the story drift ratio is still not equal to the bay angular distortion. In addition, as the location of the adjacent building gradually approaches the excavation corner area, the short-axis damage of the adjacent building increases. And the factors affecting its damage, in addition to the angular distortion, also need to consider the influence of the curvature of the ground settlement curve which is parallel to the excavation area to be better assess the damage potential of the adjacent building caused by excavation.
The results of the second part showed that the structural stiffness of the adjacent building increases, but the story drift ratio of each floor caused by excavation gradually tends to be consistent, and the difference between the story drift ratio and the span drift ratio decreases, but the story drift ratio is still not enough to represent the span drift ratio. Therefore, the use of the interstudy story drift ratio to evaluate the damage behavior of adjacent buildings may underestimate or misjudge the actual structural damage potential. In addition, the increase in structural stiffness can reduce the damage to the superstructure, but the damage to the high-rise structure occurs in the basement and foundation position. In addition to the damage to the adjacent building, it may even ignore its damage.

論文摘要 ABSTRACT 誌謝 目錄 表目錄 圖目錄 第一章 緒論 1.1 研究背景與目的 1.2 研究內容及架構 第二章 文獻回顧 2.1 開挖引致之地盤反應及結構物變形行為 2.1.1 地盤反應行為 2.1.2 結構物變形行為 2.2 開挖引致結構物損害評估 2.3 三維開挖與鄰房結構物之解耦分析 2.4 開挖角隅效應下之結構物行為 2.5 鄰房結構勁度對結構物之影響 第三章 三維解耦分析方法 3.1 開挖模擬方法 3.1.1 開挖模擬流程 3.1.2 土壤分析模式 3.2 鄰房結構物模擬方法 3.2.1 土壤彈簧勁度模擬方法 3.2.2 獨立基腳結構物模擬 3.2.3 板式筏基結構物模擬 3.3 開挖與結構物迭代分析方法 第四章 開挖案例與鄰房結構物模型之解耦分析 4.1 開挖案例分析模擬 4.1.1 開挖案例之工程概況 4.1.2 土壤與擋土結構之參數率定 4.1.3 開挖分析模型之假設條件 4.2 鄰房結構物分析模擬 4.2.1 校舍結構物模型模擬 4.2.2 不同結構勁度之結構物模型模擬與驗證 4.2.3 結構物分析流程 4.3 鄰房結構物之解耦分析結果 4.3.1 校舍結構物之解耦分析結果 4.3.2 不同結構勁度之結構物解耦分析結果 第五章 開挖角隅效應與鄰房結構勁度對角變量之影響 5.1 開挖引致之鄰房角變量關係定義 5.2 開挖角隅效應下鄰房之角變量反應 5.2.1 開挖沉陷與鄰房位置說明 5.2.2 開挖角隅效應下之鄰房角變量反應 5.2.3 開挖沉陷曲線之多項式回歸流程及應用 5.2.4 開挖沉陷曲線與鄰房結構行為之關係 5.3 結構勁度與開挖鄰房角變量之關係 5.3.1 跨間勁度與鄰房結構行為之探討 5.3.2 結構勁度對鄰房角變量之影響 5.3.3 結構勁度與鄰房損害之關係 第六章 結論與建議 6.1 結論 6.1.1 開挖角隅效應下之鄰房反應 6.1.2 開挖沉陷曲線與鄰房結構行為之關係 6.1.3結構勁度與開挖鄰房角變量之關係 6.1.4結構勁度與開挖鄰房損害之關係 6.2建議 參考文獻 附表A

1. 汪家新(2017),「以三維解耦分析方法探討開挖引致之地盤反應與不同基礎型式之鄰房損害潛勢」,碩士論文,國立台灣科技大學營建工程系。
2. 林冠傑(2016),「以三維解耦分析方法探討開挖引致地盤反應與不同方位之鄰房損害潛勢評估」,碩士論文,國立台灣科技大學營建工程系。
3. 林宜甄(2019),「以三維解耦分析方法探討開挖與複合式基礎形式之鄰房互制行為」,碩士論文,國立台灣科技大學營建工程系。
4. 陳維晟(2015),「三維空間下開挖行為與鄰房反應之解耦分析與探討」,碩士論文,國立台灣科技大學營建工程系。
5. 陳思琳(2018),「以三維解耦分析方法探討開挖與板式筏基之鄰房互制行為」,碩士論文,國立台灣科技大學營建工程系。
6. 楊家睿(2021),「以三維解耦分析方法探討開挖地表沉陷與鄰房角變量之行為」,碩士論文,國立台灣科技大學營建工程系。
7. 新北市政府工務局(2019),「新北市建築物工程施工損壞鄰房鑑定手冊」
8. 歐章煜(2017),「進階深開挖工程分析與設計」,科技圖書。
9. 謝旭昇(2021),「高層建築基礎設計用之地盤反力係數」,地工技術雜誌,第168期,第79-92頁。
10. 顏東利、張桂才(1991),「建築物允許沉陷量之探討」,地工技術雜誌,第34期,第78-96頁。
11. Bjerrum, L. (1963). "Allowable settlement of structures." Proceedings of the 3rd European Conference on Soil Mechanics and Foundation Engineering, Wiesbaden, Germany, Vol. 2, 135-137.
12. Boscardin, M. D., & Cording, E. J. (1989). "Building response to excavation-induced settlement." Journal of Geotechnical Engineering, 115(1), 1-21.
13. Boone, S. J. (1996). "Ground-movement-related building damage." Journal of Geotechnical Engineering, 122(11), 886-896.
14. Burd, H. J., Houlsby, G. T., Augarde, C. E., & Liu, G. (2000). "Modelling tunneling-induced settlement of masonry buildings." Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 143(1), 17-29.
15. Cording, E. J., Long, J. L., Son, M., Laefer, D., & Ghahreman, B. (2010). "Assessment of excavation-induced building damage." Earth Retention Conference 3, 101-120.
16. Dang, H. P. (2008). "Excavation behavior and adjacent building reponse analyses using user defined soil models in PLAXIS." Master dissertation, National Taiwan University of Science and Technology.
17. Dang, H. P., Lin, H. D., Kung, J. H., & Wang, C. C. (2012)." Deformation behavior analyses of braced excavation considering adjacent structure by user-defined soil models." Journal of GeoEngineering, 7(1), 13-20.
18. Finno, R. J., and Bryson, L. S. (2002). "Response of building adjacent to stiff excavation support system in soft clay." Journal of performance of constructed facilities, 16(1), 10-20.
19. Finno, R. J., Bryson, S., and Calvello, M. (2002), "Performance of a stiff support system in soft clay." Journal of Geotechnical and Geoenvironmental Engineering, 128(8), 660-671.
20. Finno, R. J., Blackburn, J. T., and Roboski, J. F. (2007). "Three-dimensional effects for supported excavation in clay." Journal of Geotechnical and Geoenvironmetal Engineering, ASCE 133(1), 30-36.
21. Gazetas, G. and Tassoulas, J. L. (1987). "Horizontal stiffness of arbitrarily shaped embedded foundations." Journal of Geotechnical Engineering, ASCE, 113(5), 440-457.
22. Hsieh, P. G., & Ou, C. Y. (1998). "Shape of ground surface settlement profiles caused by excavation." Canadian geotechnical journal, 35(6), 1004-1017.
23. Khoiri, M. and Ou, C. Y. (2013) "Evalution of deformation parameter for deep excavation in sand through case histories." Computers and Geotechnics, Vol 47, pp.57-67.
24. Laefer, D. F., Ceribasi, S., Long, J. H., & Cording, E. J. (2009). "Predicting RC frame response to excavation-induced settlement." Journal of geotechnical and geoenvironmental engineering, 135(11), 1605-1619.
25. Lim, A., Ou, C. Y., and Hsieh, P. G. (2010). "Evaluation of clay constitutive models for analysis of deep excavation under undrained consitions." Journal of GeoEngineering, 5(1), 9-20.
26. Lin, H. D., Truong, H. M., Dang, H. P., & Chen, C. C. (2014). "Assessment of 3D Excavation and Adjacent Building's Reponses with Consideration of Excavation-Structure interaction." Tunneling and Underground Construction, 256-265.
27. Lin, H. D., Mendy, S., Liao, H. C., Dang, P. H., Hsieh, Y. M., & Chen, C. C. (2016). "Responses of 3D excavation and adjacent buildings in sagging and hogging zones using Dcoupled Analysis Method." Journal of GeoEngineering, 11(2), 85-96.
28. Lilianto, S. (2020) "Study of excavation behavior and adjacent building response with Mixed Foundation Using 3D Decoupled and Coupled Analysis."
29. Mendy, S. (2014) "Study of excavation behavior and adjacent building response using 3D Decouple Analysis." Master dissertation, National Taiwan University of Science and Technology.
30. Ou, C. Y., Hsieh, P. G., and Chiou, D. C. (1993). "Characteristics of ground surface settlement during excavation." Canadian Geotechnical Journal, 30, 758-767.
31. Ou, C. Y., Liao, J. T., and Lin, H. D. (1998). "Performance of diaphragm wall constructed using top-down method." Journal of Geotechnical and Geoenvironmetal Engineering, 124(9), 798-808.
32. Ou, C. Y., Liao, J. T., and Cheng, W. L. (2000). "Building response and ground movements induced by a deep excavation." Geotechnique, 50(3), 209-220.
33. Ou, C. Y., & Hsieh, P. G. (2011). "A simplified method for predicting ground settlement profiles induced by excavation in soft clay." Computers and Geotechnics, 38(8), 987-997.
34. Plaxis 3D. (2014). Material Models Manual.
35. Skempton, A. W., & MacDonald, D. H. (1956). "The allowable settlements of buildings." Proceedings of the Institution of Civil Engineers, 5(6), 727-768.
36. Son, M., and Cording, E. J. (2005). "Estimation of building damage due to excavation-induced ground movements." Journal of Geotechnical and Geoenvironmetal Engineering, ASCE, 131(2), 162-177.
37. Son, M., & Cording, E. J. (2007). " Evaluation of building stiffness for building response analysis to excavation-induced ground movements." Journal of Geotechnical and Geoenvironmental engineering, 133(8), 995-1002.
38. Schuster, M., Kung, G. T. C., Juang, C. H., and Hashash, Y. M. A. (2009). "Simplified model for evaluating damage potential of buildings adjacent to a braced excavation." Journal of Geotechnical and Geoenvironmetal Engineering, ASCE, 135(12), 1823-1835.
39. Son, M., & Cording, E. J. (2010). "Responses of buildings with different structural types to excavation-induced ground settlements." Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 137(4), 323-333.
40. Truong, H. M. (2013). "Study of excavation behavior and adjacent building response with 3D simulation." Master dissertation, National Taiwan University of Science and Technology.
41. Wahls, H. E. (1981). "Tolerable settlement of buildings." Journal of Geotechnical and Geoenvironmental Engineering, (107), 1489-1504.

無法下載圖示 全文公開日期 2025/08/04 (校內網路)
全文公開日期 2025/08/04 (校外網路)
全文公開日期 2025/08/04 (國家圖書館:臺灣博碩士論文系統)
QR CODE