簡易檢索 / 詳目顯示

研究生: 陳子捷
Zih-Jie Chem
論文名稱: 迷你倉庫火災行為研究
A Study on the Fire Behavior of Mini Warehouse
指導教授: 林慶元
Ching-Yuan Lin
口試委員: 莊英吉
Ying-Ji Chuang
郭詩毅
Shih-Yi Kuo
學位類別: 碩士
Master
系所名稱: 設計學院 - 建築系
Department of Architecture
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 76
中文關鍵詞: 迷你倉庫防火區劃火災行為
外文關鍵詞: mini warehouse, fire compartment, fire behavior
相關次數: 點閱:162下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

台灣迷你倉庫業至2016年為止,全國設置共有82處,其中40處設置於台北市,約佔全國總數量之50%,顯示迷你倉庫空間設置於人口稠密之都會區為其未來趨勢。本研究經由台北市迷你倉庫之案例調查,以不同類型之倉體來探討迷你倉庫燃燒行為與溫度變化,進行四次全尺寸實驗及兩次電腦模擬分析,阻熱性防火時效判斷亦比照CNS12514-1標準。

本研究針對第一類型、第二類型、第三類型,三種類型倉體進行四次一小時全尺寸火災實驗,實驗結果顯示,第一次實驗因過程中倉門為關閉之情形,發生火災時會形成悶燒之情形,不會造成鄰近倉庫之延燒,並無火災擴大之危險性。第二、三、四次之實驗結果顯示,發生火災時,若倉庫倉門為未關閉之情形,增加了垂直開口換氣,將導致火勢擴大,本研究針對倉體隔間牆之阻熱性防火時效判斷亦比照CNS12514-1規定為所有測點之平均溫度不得大於140℃ +室內溫度、所有測點之最高溫度不得大於180℃ +室內溫度,本實驗室溫均測得為30℃,因此以測點平均溫度170℃、最高溫度210 ℃作為本研究之危險分際點,實驗結果顯示,鄰近起火室之觀察室隔間牆測點平均溫度超過170℃,最高溫度均超過210℃,無法通過阻熱性標準,具火災擴大之危險性。本研究以全尺寸火災實驗所得的數值為參數,以FDS程式模擬較具危險性之第二類型、第三類型倉體火災燃燒情形。綜合全尺寸實驗與電腦模擬結果,得知第三類型(倉門半開45度,有夾層,火源位置在下層)之倉體,為危險性最高之倉體類型。


Taiwan's mini-warehouse industry has, by the end of 2016, set up 82 nationwide, of which 40 of them are located in Taipei, accounting to 49% of the total around the country. This shows that mini-warehouse space located at densely populated metropolitan areas has already become a trend of the future. Through the investigation of cases study with mini-warehouse in Taipei City, it has made use of diverse types of warehouse structure to explore the relationship between combustion behavior and temperature changes of mini-warehouse. As a whole, the study has conducted four full-scale experiments and two computer simulations for analysis, and for timing determination of fire-insulation fire prevention it will also be judged according to CNS12514-1 standard.

This study has, in regards to the first category, second category, and third category, all three categories of warehouse structures, conducted four times of one-hour full-scale fire experiments in every hour. The results show in the first experiment that since the warehouse door is closed during the process, smoldering situation has incurred, but it would not cause burning to adjacent warehouse, so that there is no danger of fire proliferation. For results of the second, third and fourth experiments, they show that in the event of a fire if the warehouse door is not closed, it would increase the ventilation of vertical opening and lead to the proliferation of fire. Regarding the timing determination of fire-insulation fire prevention by the partitioning wall of warehouse structure, this study has taken reference after the regulation of CNS12514-1 as the average temperature of all measuring points should not exceed 140 °C + indoor temperature, and the highest temperature of all measuring points shall not exceed 180 °C + indoor temperature. When the average temperature of the laboratory is measured to be 30 °C, the average temperature of the measuring point is 170 °C, while the highest temperature is 210 °C is taken as the risk separation point of the study. As shown by the experimental results, the average temperature of the partitioning wall at the observation room adjacent to the fire chamber exceeds 170 °C, with its highest temperature in excess to 210 °C, which cannot pass fire insulation standard and is found with danger of fire proliferation. Besides, all the values obtained from the full-scale fire experiments are of parameters, while FDS program is used to simulate the more dangerous warehouse fires with the second and third category. As learned from the summary results of the full-scale experiments and computer simulation, it is understood that the warehouse structure of the third category (door half open at 45 degrees, with sandwiching, and fire source located at the lower layer), is considered to be the of the most dangerous.

目錄 中文摘要...........................................I Abstract..........................................II 誌謝..............................................III 目錄...............................................IV 表目錄.............................................VI 圖目錄............................................VII 第一章 緒論.......................................1 1.1 研究背景與動機..............................1 1.2 研究目的................................... 2 1.3 研究限制....................................2 1.4 研究流程....................................3 第二章 文獻回顧....................................5 2.1 迷你倉庫相關法規.............................5 2.2 迷你倉庫發展背景.............................6 2.3 國內倉儲重大災害.............................7 2.4 迷你倉庫實地訪查.............................8 2.5 國內外儲存倉庫防火相關法規....................9 2.6 防火時效標準介紹.............................13 2.7 居室火災燃燒行為.............................15 2.8 火源成長模式.................................19 2.9 火災嚴重度之影響因子..........................21 2.10 FDS電腦模擬程式..............................22 第三章 實驗計畫.....................................26 3.1 實驗設計與規劃................................26 3.2 實驗場所設備介紹..............................26 3.3 實驗儀器設備..................................32 3.4 實驗前置作業..................................34 3.5 實驗設定......................................35 3.6 實驗準備流程...................................39 3.7 FDS電腦模擬設計................................40 第四章 結果與討論.....................................41 4.1 不同迷你倉庫類型之實驗安排.......................41 4.2 第一類型迷你倉庫................................41 4.3 第二類型迷你倉庫................................47 4.4 第三類型迷你倉庫................................50 4.5 不同迷你倉庫類型之實驗小結.......................53 4.6 FDS電腦模擬分析.................................56 4.7 小結...........................................60 第五章 結論及建議......................................61 5.1 結論............................................61 5.2 建議............................................62 參考文獻................................................63

1. 「本市自助儲物空間之定義及商業區限制設置及其附條件規定」,2017年4月,商業處,臺北市政府。
2. CNS 12514-1,2016,「建築物構造部分耐火試驗法-第一部:一般事項要求」。
3. 陳映今,2012,「海運進出口倉儲作業之風險管理研究」,國立高雄海洋科技大學航運管理研究所碩士論文。
4. 「臺北市土地使用分區管制自治條例」,2011,法務局,臺北市政府。
5. 「內政部消防署全球資訊網站」,http://www.nfa.gov.tw/index.aspx。
6. NFPA 1420,1993,「Recommended Practice for Pre-Incident Planning for Warehouse Occupancies」。
7. 「消防法」,內政部,消防署。
8. 「各類場所消防安全設備設置標準」,內政部,消防署。
9. 「建築技術規則,建築設計施工編」,內政部,營建署。
10. 「原有合法建築物防火避難設施與消防設備改善辦法」,內政部,營建署。
11. <NFPA 11,NFPA 13, NFPA 15, NFPA 16, NFPA 25, NFPA 30, NFPA 101, NFPA 471>, 2003 edition, National Fire Protection Association(NFPA), American.
12. <NFPA 231,NFPA 231C>, 1993edition, National Fire Protection Association(NFPA), American.
13. 莊英吉, 2007,「建築物防火區劃構件與部品之全尺寸火災試驗設備及方法開發」,國立台灣科技大學建築研究所博士論文。
14. ISO 834-1, 1999, “Fire-resistance tests-Elements of building construction: Part1: General requirements,” .
15. CNS 14652,2002,「建築物防火詞彙─防火試驗用語」。
16. CNS 11227-1,2016,「耐火性能試驗法-第1 部:門及捲門組件」。
17. CNS 15038,2006,「建築用門遮煙性試驗法」。
18. CNS 15814-1,2015,「建築構件與零組件防火試驗-配管設置防火測試-第1部:貫穿填縫材料」。
19. NFPA 921,「火災與爆炸調查指南」,第三章 火災工學基礎。
20. 雷明遠,1995,「耐燃裝修材料之使用設計及施工問題」,內政部建築研究所籌備處建築室內裝修(飾)防火材料使用講習會論文集,148-151頁。
21. Kawagoe, K. 1958, “Fire Behavior in Rooms.” Building research Institute, Japan, Report No.27.
22. Kawagoe, K and Sekine, T. 1963, “Estimation for Fire Temperature-time Curve in Rooms.” BRI Occasional Report No.11, Building Research Institute, Japan.
23. Thomas, P.H. 1976, “Some Problems Aspects of Fully Developed Room Fires,” Fire Standards and Safety, ASTM, SP-614, pp. 112-130, April 5-6.
24. Harmathy, T.Z. 1972, “A New Look at Compartment Fire.” PartI, Fire Technology, 8 (3), pp. 197-217.
25. Harmathy, T.Z. 1972, “A New Look at Compartment Fire,” PartII, Fire Technology, 8(4), pp. 327-351.
26. Ma Z., Mäkeläinen P. 2000, “Parametric temperature-time curves of medium compartment fires for structural design,” Fire Safety Journal, 34(4), pp.361-375.
27. Ching-Yuan Lin , 2000,“Study of Exposure Fire Spread Between Buildings by Radiation.” Journal of the Chinese Institute of Engineers, 23(4), pp.493-504.
28. 經濟部工業局全球資訊網工業廠房消防安全性能化設計技術手冊,2007。
29. NFPA 92B,2005,Standard for Smoke Management Systems in Malls, Atria, and Large Spaces,National Fire Protection Association.

30. 游惟翔,2014,「居室夾層簡易二層法之研究」,國立交通大學機械工程系碩士論文。
31. S.H. Ingberg, 1928 ,“Tests of severity of building fires.” NFPA Quarterly 22, 43.
32. M. Law, 1971, “A relationship between fire grading and building design and contents.” JFRO Fire Research Note No. 877.
33. O. Pettersson, 1974, “The connection between a real fire exposure and the heating conditions according to standard, fire resistance tests - with special application to steel structures.” European Convention for Constructional Steelwork, CECM-III-74-2E, Chapter II.
34. E.G. Butcher and A.C. Parnell, 1983, “Designing for fire safety”.
35. Law, M. 1971,"A relationship between fire grading and building design and contents.” Fire Research Note No. 877, Fire Research Station, Borehamwood, U.K.
36. 陳俊勳,1999,「建築物火災危險評估電腦模式驗證研究」,內政部建築研究所專題研究計畫成果報告。
37. 楊智勝,2004,「大型購物中心大空間之性能式煙控與避難系統設計分析及全尺度實驗印證」,國立中山大學機械與機電工程學系博士論文。
38. 蔡綽芳、蔡匡忠、雷明遠、蔡銘儒、羅啟文、蘇崇輝、鐘偉庭、陳盈月,2015年10月,「建築物火災模擬工具應用參考指南之研究」,內政部建築研究所協同研究報告。
39. 曾重榮,2009,「醫院手術室火災境況下初期應變與救援作為之研究」,國立台北科技大學土木與防災研究所碩士論文。

QR CODE