簡易檢索 / 詳目顯示

研究生: Manas Sarkar
Manas Sarkar
論文名稱: 探討蛋殼顆粒增強Mg-3.5Y 鎂合金機械性質及浸泡腐蝕試驗
Investigation of Mechanical and Immersion Corrosion Behavior on Mg-3.5Y Alloy Reinforced with Economical Eggshell Particles
指導教授: 黃崧任
Song-Jeng Huang
李泉
Chuan Li
口試委員: 黃崧任
Song-Jeng Huang
李泉
Chuan Li
丘群
Chun Chiu
東藤正浩
Masahiro Todoh
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 65
中文關鍵詞: 植入材料降解應力屏蔽羥基磷灰石生物活性材料
外文關鍵詞: Implant material, Degradation, Stress-shielding, Hydroxyapatite, Bioactive material
相關次數: 點閱:32下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

骨骼在我們身體結構中扮演最重要的角色,同時保護著重要器官。不正確的骨折癒合可能導致骨骼強度減弱,扭轉力可能在癒合過程中引起新的裂縫,或在短時間內破壞骨折癒合的部位。接觸式癒合是一種通過為骨折的骨骼提供堅固的結構支持的療法,不僅提供支持,還可以在骨折表面之間形成橋樑,促進成骨過程。WE43是一種鎂合金,含有適合植入的稀土元素,因其可生物降解性而被認為適用。稀土元素的合金化顯示出良好的相容性,但在我們的體內對稀土元素的需求和存在都較少,即在我們的體內,稀土的存在量通常是ppm或ppb。本研究使用鈣而不是其他化合物來改善機械性能、生物相容性和可生物降解性更為合適,因為鈣的取得容易和成本較低。使用碳酸鈣已被證明對細胞增殖和成骨細胞分化具有高生存率。在這項工作中,蛋殼為可行且經濟實惠獲取鈣的來源,因為蛋殼含有90%或更多的碳酸鈣,每克雞蛋殼粉提供幾乎380毫克的鈣。採用球磨法研磨雞蛋殼並將其轉化為顆粒。通過常規攪拌鑄造法製備了含有最小量稀土元素的WE43合金和不同重量百分比的雞蛋殼顆粒。利用光學顯微鏡(OM)、能譜儀(EDS)和場發射掃描電子顯微鏡(FE-SEM)進行了微觀結構和成分分析,用於分析合金的組成和元素分佈。採用X射線衍射儀(XRD)分析了製備合金中可能存在的材料相。通過使用MTS 100k萬用測試機進行壓縮測試和Akashi MVK-H1進行維克氏硬度測試,研究了材料的機械性質。腐蝕部分,合金的長期浸泡腐蝕在37°C的烤箱中,浸泡在SBF溶液中進行,為期15天。使用OM、XRD、SEM和不同的EDS進行表面和橫截面分析,以了解鈍化層、化學成分和腐蝕剖面。結果顯示,含有1%wt和3%wt雞蛋殼顆粒的合金顯示出期望的機械性質,但Mg-3.5Y-3Es顯示出更好且均勻的腐蝕性質。


The alloying of rare earth elements shows good compatibility but both the need and presence of RREs in our body are less i.e., its presence is either ppm or ppb in our body. Using calcium instead of other compounds to improve mechanical properties, biocompatibility, and biodegradability is more suitable because of abundance and cost reduction. In this work, the feasible as well as economical calcium source was obtained by eggshells, as it has almost 90% or more calcium carbonate which provides almost 380 mg of calcium per gram of eggshell powder. Ball milling was used to crush the eggshells and convert them into powder. Conventional stir-casting fabricated a magnesium-based alloy with a minimal amount of rare earth elements as in WE43 and various weight percentages of eggshell particles. Microstructural and compositional analysis was done by optical microscopy (OM) and field emission scanning electron microscopy (FE-SEM) equipped with energy dispersive spectroscopy (EDS, Oxford ultimate max 100) which was employed to analyze the composition as well as elemental distribution. X-ray diffractometry (XRD) was used to analyze the possible phase presence in the fabricated alloy. Mechanical behavior was studied by compression test using an MTS 100k universal testing machine and microhardness using Akashi MVK-H1. The corrosion behavior of long-term immersion of the alloys was conducted in SBF solution at 37°C in an oven for 15 days. OM, XRD, SEM, and different EDS were used for surface as well as cross-section analysis to understand the passivation layer and the chemical composition and corrosion profile. The results revealed that the alloy with 1 and 3 wt.% eggshell particles shows the desired mechanical properties, but Mg-3.5Y-3Es show better corrosion uniformity.

Acknowledgment ii Abstract iii Tables of Figures viii List of Tables xi Chapter I: Introduction and Objectives 1 1.1. Introduction 1 1.2. Objective 2 Chapter II: Literature Survey 3 2.1. Literature Review 3 Chapter III: Materials and Methods 10 3.1. Experimental Procedures 10 3.1.1. Materials Selection 10 3.1.1.1. Matrix material 10 3.1.1.2. Reinforcement 11 3.1.2. Fabrication of alloy 12 3.1.3. Alloy Specimen preparation for analysis and testing 14 3.1.4. Microstructural Characterization 14 3.1.5. Mechanical Testing 15 3.1.5.1. Compression test 15 3.1.5.2. Micro-hardness test 16 3.1.6. Immersion test 17 3.1.6.1. Immersion setup and parameters 17 3.1.6.2. Characterization of the immersion samples 18 Chapter IV: Results and Discussions 20 4.1. Microstructural characterization and compositional analysis 20 4.1.1. Optical Microscopy 20 4.1.2. X-ray diffractometry and Analyses 22 4.1.3. SEM-EDS analysis. 24 4.1.3.1. As-cast matrix material 24 4.1.3.2. Casted Mg-3.5Y-x (1,3,5 wt.%) Es particles 25 4.2. Mechanical behavior of fabricated alloys 28 4.2.1. Compression testing 28 4.2.2. Microhardness test 29 4.3. Immersion corrosion and surface characterization of passivation layers 30 4.3.1. pH curve variation 30 4.3.2. Corrosion Profile Characterization 31 4.3.3. Passivation layer analysis 32 4.3.3.1. XRD analysis of surface passivation layer 32 4.3.3.2. SEM/EDS analysis of cross-section 32 4.4. Casting and phase formation 35 4.5. Microstructural evaluation and its effect on mechanical property 36 4.6. Corrosion mechanism of fabricated alloys and its degradation behavior in SBF 40 Summary of Results and Discussions 44 Chapter V: Conclusions 46 Conclusion 46 References 48

[1] A.M. Wu, C. Bisignano, S.L. James, G.G. Abady, A. Abedi, E. Abu-Gharbieh, R.K. Alhassan, V. Alipour, J. Arabloo, M. Asaad, W.N. Asmare, A.F. Awedew, M. Banach, S.K. Banerjee, A. Bijani, T.T.M. Birhanu, S.R. Bolla, L.A. Cámera, J.C. Chang, D.Y. Cho, M.T. Chung, R.A.S. Couto, X. Dai, L. Dandona, R. Dandona, F. Farzadfar, I. Filip, F. Fischer, A.A. Fomenkov, T.K. Gill, B. Gupta, J.A. Haagsma, A. Haj-Mirzaian, S. Hamidi, S.I. Hay, I.M. Ilic, M.D. Ilic, R.Q. Ivers, M. Jürisson, R. Kalhor, T. Kanchan, T. Kavetskyy, R. Khalilov, E.A. Khan, M. Khan, C.J. Kneib, V. Krishnamoorthy, G.A. Kumar, N. Kumar, R. Lalloo, S. Lasrado, S.S. Lim, Z. Liu, A. Manafi, N. Manafi, R.G. Menezes, T.J. Meretoja, B. Miazgowski, T.R. Miller, Y. Mohammad, A. Mohammadian-Hafshejani, A.H. Mokdad, C.J.L. Murray, M. Naderi, M.D. Naimzada, V.C. Nayak, C.T. Nguyen, R. Nikbakhsh, A.T. Olagunju, N. Otstavnov, S.S. Otstavnov, J.R. Padubidri, J. Pereira, H.Q. Pham, M. Pinheiro, S. Polinder, H. Pourchamani, N. Rabiee, A. Radfar, M.H.U. Rahman, D.L. Rawaf, S. Rawaf, M.R. Saeb, A.M. Samy, L. Sanchez Riera, D.C. Schwebel, S. Shahabi, M.A. Shaikh, A. Soheili, R. Tabarés-Seisdedos, M.R. Tovani-Palone, B.X. Tran, R.S. Travillian, P.R. Valdez, T.J. Vasankari, D.Z. Velazquez, N. Venketasubramanian, G.T. Vu, Z.J. Zhang, T. Vos, Global, regional, and national burden of bone fractures in 204 countries and territories, 1990–2019: a systematic analysis from the Global Burden of Disease Study 2019, Lancet Healthy Longev 2 (2021) e580–e592. https://doi.org/10.1016/S2666-7568(21)00172-0.
[2] I. Antoniac, M. Miculescu, V. Mănescu, A. Stere, P.H. Quan, G. Păltânea, A. Robu, K. Earar, Magnesium-Based Alloys Used in Orthopedic Surgery, Materials 15 (2022). https://doi.org/10.3390/ma15031148.
[3] N.S. Manam, W.S.W. Harun, D.N.A. Shri, S.A.C. Ghani, T. Kurniawan, M.H. Ismail, M.H.I. Ibrahim, Study of corrosion in biocompatible metals for implants: A review, J Alloys Compd 701 (2017) 698–715. https://doi.org/10.1016/j.jallcom.2017.01.196.
[4] M. Hasiak, B. Sobieszczańska, A. Łaszcz, M. Biały, J. Chęcmanowski, T. Zatoński, E. Bożemska, M. Wawrzyńska, Production, mechanical properties and biomedical characterization of zrti-based bulk metallic glasses in comparison with 316l stainless steel and ti6al4v alloy, Materials 15 (2022). https://doi.org/10.3390/ma15010252.
[5] H. Kabir, K. Munir, C. Wen, Y. Li, Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: Biomechanical and biocorrosion perspectives, Bioact Mater 6 (2021) 836–879. https://doi.org/10.1016/j.bioactmat.2020.09.013.
[6] J.L. Wang, J.K. Xu, C. Hopkins, D.H.K. Chow, L. Qin, Biodegradable Magnesium-Based Implants in Orthopedics—A General Review and Perspectives, Advanced Science 7 (2020). https://doi.org/10.1002/advs.201902443.
[7] H.Y. Jang, J.Y. Shin, S.H. Oh, J.H. Byun, J.H. Lee, PCL/HA Hybrid Microspheres for Effective Osteogenic Differentiation and Bone Regeneration, ACS Biomater Sci Eng 6 (2020) 5172–5180. https://doi.org/10.1021/acsbiomaterials.0c00550.
[8] Y. Yang, Y. Zhao, G. Tang, H. Li, X. Yuan, Y. Fan, In vitro degradation of porous poly(l-lactide-co-glycolide)/β-tricalcium phosphate (PLGA/β-TCP) scaffolds under dynamic and static conditions, Polym Degrad Stab 93 (2008) 1838–1845. https://doi.org/10.1016/j.polymdegradstab.2008.07.007.
[9] Y. Zhang, J. Xu, Y.C. Ruan, M.K. Yu, M. O’Laughlin, H. Wise, D. Chen, L. Tian, D. Shi, J. Wang, S. Chen, J.Q. Feng, D.H.K. Chow, X. Xie, L. Zheng, L. Huang, S. Huang, K. Leung, N. Lu, L. Zhao, H. Li, D. Zhao, X. Guo, K. Chan, F. Witte, H.C. Chan, Y. Zheng, L. Qin, Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats, Nat Med 22 (2016) 1160–1169. https://doi.org/10.1038/nm.4162.
[10] J. Wu, X. Cheng, J. Wu, J. Chen, X. Pei, The development of magnesium-based biomaterials in bone tissue engineering: A review, J Biomed Mater Res B Appl Biomater (2023). https://doi.org/10.1002/jbm.b.35326.
[11] A. Hideo-Kajita, H.M. Garcia-Garcia, P. Kolm, V. Azizi, Y. Ozaki, K. Dan, H. Ince, S. Kische, A. Abizaid, R. Töelg, P.A. Lemos, N.M. Van Mieghem, S. Verheye, C. von Birgelen, E.H. Christiansen, W. Wijns, T. Lefèvre, S. Windecker, R. Waksman, M. Haude, Comparison of clinical outcomes between Magmaris and Orsiro drug eluting stent at 12 months: Pooled patient level analysis from BIOSOLVE II–III and BIOFLOW II trials, Int J Cardiol 300 (2020) 60–65. https://doi.org/10.1016/j.ijcard.2019.11.003.
[12] S.H. Byun, H.K. Lim, K.H. Cheon, S.M. Lee, H.E. Kim, J.H. Lee, Biodegradable magnesium alloy (WE43) in bone-fixation plate and screw, J Biomed Mater Res B Appl Biomater 108 (2020) 2505–2512. https://doi.org/10.1002/jbm.b.34582.
[13] D. Bian, X. Chu, J. Xiao, Z. Tong, H. Huang, Q. Jia, J. Liu, W. Li, H. Yu, Y. He, L. Ma, X. Wang, M. Li, T. Yang, W. Huang, C. Zhang, M. Yao, Y. Zhang, Z. Xu, S. Guan, Y. Zheng, Design of single-phased magnesium alloys with typically high solubility rare earth elements for biomedical applications: Concept and proof, Bioact Mater 22 (2023) 180–200. https://doi.org/10.1016/j.bioactmat.2022.09.018.
[14] L.M. Calado, M.J. Carmezim, M.F. Montemor, Rare Earth Based Magnesium Alloys—A Review on WE Series, Front Mater 8 (2022). https://doi.org/10.3389/fmats.2021.804906.
[15] G. Parande, V. Manakari, S.D. Sharma Kopparthy, M. Gupta, A study on the effect of low-cost eggshell reinforcement on the immersion, damping and mechanical properties of magnesium–zinc alloy, Compos B Eng 182 (2020). https://doi.org/10.1016/j.compositesb.2019.107650.
[16] K.S. Stiffler, Internal fracture fixation, Clin Tech Small Anim Pract 19 (2004) 105–113. https://doi.org/10.1053/j.ctsap.2004.09.002.
[17] H. Mehboob, S.H. Chang, Application of composites to orthopedic prostheses for effective bone healing: A review, Compos Struct 118 (2014) 328–341. https://doi.org/10.1016/j.compstruct.2014.07.052.
[18] L.E. Claes, C.A. Heigele, Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing, 1999.
[19] H. Isaksson, W. Wilson, C.C. van Donkelaar, R. Huiskes, K. Ito, Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing, J Biomech 39 (2006) 1507–1516. https://doi.org/10.1016/j.jbiomech.2005.01.037.
[20] H. Isaksson, Recent advances in mechanobiological modeling of bone regeneration, Mech Res Commun 42 (2012) 22–31. https://doi.org/10.1016/j.mechrescom.2011.11.006.
[21] B. Huang, M. Yang, Y. Kou, B. Jiang, Absorbable implants in sport medicine and arthroscopic surgery: A narrative review of recent development, Bioact Mater 31 (2024) 272–283. https://doi.org/10.1016/j.bioactmat.2023.08.015.
[22] A. Hamed, E.-S. Salama, Effect of Eggshell Powder Solution on Some Properties of Cement Mortar, (n.d.). https://doi.org/10.15224/978-1-63248-170-2-06.
[23] M. Amling, A. Ignatius, CALCIUM AND VITAMIN D IN BONE FRACTURE HEALING AND POST-TRAUMATIC BONE TURNOVER, n.d. www.ecmjournal.org.
[24] D. Bian, X. Chu, J. Xiao, Z. Tong, H. Huang, Q. Jia, J. Liu, W. Li, H. Yu, Y. He, L. Ma, X. Wang, M. Li, T. Yang, W. Huang, C. Zhang, M. Yao, Y. Zhang, Z. Xu, S. Guan, Y. Zheng, Design of single-phased magnesium alloys with typically high solubility rare earth elements for biomedical applications: Concept and proof, Bioact Mater 22 (2023) 180–200. https://doi.org/10.1016/j.bioactmat.2022.09.018.
[25] S. Kovacevic, W. Ali, E. Martínez-Pañeda, J. LLorca, Phase-field modeling of pitting and mechanically-assisted corrosion of Mg alloys for biomedical applications, Acta Biomater 164 (2023) 641–658. https://doi.org/10.1016/j.actbio.2023.04.011.
[26] J. Wang, J. Dou, Z. Wang, C. Hu, H. Yu, C. Chen, C.C. Chen Chen, Corrosion resistance and biocompatibility of micro-arc oxidation coatings 2 with the variable sodium fluoride concentration on ZM21 magnesium alloys, n.d. https://ssrn.com/abstract=4257577.
[27] D. Mei, S. V. Lamaka, X. Lu, M.L. Zheludkevich, Selecting medium for corrosion testing of bioabsorbable magnesium and other metals – A critical review, Corros Sci 171 (2020). https://doi.org/10.1016/j.corsci.2020.108722.
[28] D.S. Petrovič, D. Mandrino, B. Šarler, J. Horky, A. Ojdanic, M.J. Zehetbauer, D. Orlov, Surface analysis of biodegradable mg-alloys after immersion in simulated body fluid, Materials 13 (2020). https://doi.org/10.3390/ma13071740.
[29] N.U. Obeyesekere, Pitting corrosion, in: Trends in Oil and Gas Corrosion Research and Technologies: Production and Transmission, Elsevier Inc., 2017: pp. 215–248. https://doi.org/10.1016/B978-0-08-101105-8.00009-7.
[30] A. Kumar, S. Kumar, N.K. Mukhopadhyay, Introduction to magnesium alloy processing technology and development of low-cost stir casting process for magnesium alloy and its composites, Journal of Magnesium and Alloys 6 (2018) 245–254. https://doi.org/10.1016/j.jma.2018.05.006.
[31] P. De Silva, L. Bucea, V. Sirivivatnanon, Chemical, microstructural and strength development of calcium and magnesium carbonate binders, Cem Concr Res 39 (2009) 460–465. https://doi.org/10.1016/j.cemconres.2009.02.003.
[32] M. Nouri, X. Sun, D.Y. Li, Beneficial effects of yttrium on the performance of Mg-3%Al alloy during wear, corrosion and corrosive wear, Tribol Int 67 (2013) 154–163. https://doi.org/10.1016/j.triboint.2013.07.012.
[33] H. Okamoto, Al-Y (Aluminum-Yttrium), J Phase Equilibria Diffus 29 (2008) 114–114. https://doi.org/10.1007/s11669-007-9226-3.
[34] M. Rao, A. Lai, M. Zan, Z. Chai, B. Wen, Y. Xiao, Preparation and application of yttrium oxide with a large specific surface area through moderate carbonation in the presence of carbon dioxide, Journal of Materials Research and Technology 22 (2023) 1076–1087. https://doi.org/10.1016/j.jmrt.2022.12.005.
[35] H. Xue, G. Yang, D. Li, Z. Xing, F. Pan, Effects of Yttrium Addition on Microstructure and Mechanical Properties of AZ80-2Sn Magnesium Alloys, High Temperature Materials and Processes 34 (2015) 743–749. https://doi.org/10.1515/htmp-2014-0095.
[36] R. Othman, Z. Mustafa, C.W. Loon, A.F.M. Noor, Effect of Calcium Precursors and pH on the Precipitation of Carbonated Hydroxyapatite, Procedia Chem 19 (2016) 539–545. https://doi.org/10.1016/j.proche.2016.03.050.

無法下載圖示 全文公開日期 2026/02/05 (校內網路)
全文公開日期 2029/02/05 (校外網路)
全文公開日期 2026/02/05 (國家圖書館:臺灣博碩士論文系統)
QR CODE