簡易檢索 / 詳目顯示

研究生: 林家輝
Chia-hui Lin
論文名稱: 馬群平衡-不平衡轉換器之新式補償架構
A new compensation scheme for Marchand baluns
指導教授: 馬自莊
Tzyh-ghuang Ma
口試委員: 陳士元
Shih-yuan Chen
張嘉展
Chia-chan Chang
曾昭雄
Chao-hsiung Tseng
廖文照
Wen-jiao Liao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 89
中文關鍵詞: 馬群平衡-不平衡轉換器補償架構振幅不平衡相位不平衡
外文關鍵詞: Marchand balun, compensation scheme, amplitude imbalance, phase imbalance
相關次數: 點閱:306下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文之研究主旨為探討馬群平衡-不平衡轉換器之補償機制。基於電路佈局需要,馬群轉換器之兩耦合線段間常需一電氣長度不可忽略之連接傳輸線,藉由時域多重反射分析,可發覺該連接線對於輸入端埠之阻抗匹配,及輸出端埠之振幅與相位平衡響應皆有顯著之影 響,明顯破壞馬群轉換器之效能。
有鑑於此,本論文提出馬群平衡-不平衡轉換器之創新補償設計,該補償架構乃控制耦合線段之電氣長度與耦合量,並於耦合線段之短路側引入補償傳輸線,以提升馬群轉換器之工作效能。依循電路實施方式,又可分為左側補償式、右側補償式、與雙側補償式馬群平衡-不平衡轉換器。依據實驗結果,可發覺雙側補償式馬群轉換器具有最寬頻之響應,在連接線電氣長度接近50度之條件下,仍可實現近似於傳統馬群平衡-不平衡轉換器之頻率響應。
本論文之研究成果,可顯著提升馬群平衡-不平衡轉換器之電路佈局自由度。


This thesis is devoted to the study of a new compensation scheme for Marchand baluns. Due to practical layout issues, the Marchand balun usually requires a nonzero connection line in-between the coupling sections. In accordance with the time-domain multi-reflection analysis, this connection line could dramatically deteriorate the input impedance matching as well as the responses at the balanced output ports including the amplitude balance and phase balance.
To tackle this problem, in this thesis a new compensation design for Marchand balun is proposed. This new configuration is accomplished by controlling the amount of coupling and the electrical lengths of the two couple lines. A pair of transmission lines at the short-circuited terminals of the coupled lines is also involved in the compensation scheme.
In the circuit implementation, three alternative balun structures, the left-side, right-side, and double-side compensated Marchand baluns, are implemented and experimentally demonstrated. According to experimental results, the double-side compensated balun features the widest fractional bandwidth, which is comparable to that of a conventional design even if the electrical length of connection line is approximately 50 degrees.
The research in this thesis can significantly improve the performance as well as the design flexibility of the Marchand baluns.

摘要 Abstract 目錄 圖目錄 表目錄 第一章 緒論 1.1 研究動機與目的 1.2 論文組織與架構 第二章 補償式馬群平衡-不平衡轉換器設計原理 2.1 前言 2.2 馬群平衡-不平衡轉換器之響應分析 2.3 單側補償式馬群平衡-不平衡轉換器 2.3.1 左側補償式馬群平衡-不平衡轉換器 2.3.2 右側補償式馬群平衡-不平衡轉換器 2.4 雙側補償式馬群平衡-不平衡轉換器 2.5 結語 第三章 單側補償式馬群平衡-不平衡轉換器設計 3.1 前言 3.2 耦合線方向耦合器 3.2.1 原理簡介 3.2.2 電路設計與佈局 3.3左側補償式馬群平衡-不平衡轉換器設計 3.3.1 模擬與量測結果 3.4右側補償式馬群平衡-不平衡轉換器設計 3.4.1 模擬與量測結果 3.5 結語 第四章 雙側補償式馬群平衡-不平衡轉換器 4.1前言 4.2雙側補償式馬群平衡-不平衡轉換器 4.2.1 第一實施例 (θL=23°, θL1=θL2=11.5°) 4.2.2 模擬與量測結果 4.2.3 第二實施例 (θL=43°, θL1=θL2=21.5°) 4.2.4 模擬與量測結果 4.2.5 第三實施例 (θL=47°, θL1=21.5°, θL2=25.5°) 4.2.6 模擬與量測結果 4.3 結語 第五章 結論 5.1 總結 5.2 未來發展 References

[1]. M. Goldfarb, J. Cole, and A. Platzker, “A novel MMIC biphase modulator with variable gain using enhancement-mode FETS suitable for 3 V wireless applications,” in Microwave and Millimeter-Wave Monolithic Circuits Symposium , May 1994, vol. I, pp.99–102.
[2]. M. Kawashima, T. Nakagawa, and K. Araki, “A novel broadband active balun,” in 33rd European Microwave Conference, 2003, pp. 495–498.
[3]. C. Viallon, D. Venturin, J. Graffeuil, and T. Parra, “Design of an Original K-Band Active Balun with Improved Broadband Balanced Behavior,” IEEE Microw. Wireless Compon. Lett., vol. 15, No 4, pp.280-282, April 2005.
[4]. Y. J. Yoon, Y. Lu, R. C. Frye, and P. R. Smith, “Modeling of Monolithic RF Spiral Transmission-Line Balun,” IEEE Trans. Microw. Theory Tech., vol. 49, pp. 393–395, Feb. 2001.
[5]. H. K. Chiou and H. H. Lin, “A miniature MMIC double doubly balanced mixer using lumped dual balun for high dynamic receiver application,” IEEE Microw. Wireless Compon. Lett., vol. 7, pp. 227, Aug. 1997.
[6]. H. K. Chiou, H. H. Lin, and C. Y. Chang, “Lumped-element compensated high/low-pass balun design for MMIC double-balanced mixer,” IEEE Microwave Guided Wave Lett., vol. 7, pp. 248–250, Aug. 1997.
[7]. N. Marchand, “Transmission-line conversion transformers,” Electronics, vol. 17, no. 12,pp. 142–145, 1944.
[8]. C. Choonsik and K. C. Gupta, “A new design procedure for single-layer and two-layer three-line baluns, ” IEEE Trans. Microw. Theory Tech., vol. 46, pp. 2514–2519, Dec. 1998.
[9]. K. S. Ang and I. D. Robertson, “Analysis and design of impedance transforming planar Marchand baluns,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 2, pp. 402–406, Feb. 2001.
[10]. K. S. Ang, Y. C. Leong, and C. H. Lee, “Analysis and Design of Miniaturized Lumped-Distributed Impedance-Transforming Baluns,” IEEE Trans. Microw. Theory Tech., vol. 51, pp. 1009–1017, Mar. 2003.
[11]. C. H. Lien, C. H. Wang, C. S. Lin, P. S. Wu, K.Y. Lin, and H. Wang, “Analysis and Design of Reduced-size Marchand Rat-Race Hybrid for Millimeter-Wave Compact Balance Mixers in 130-nm CMOS Process,” IEEE Trans. Microw. Theory Tech., vol. 57, pp. 1966–1977, Aug. 2009.
[12]. K. S. Ang and Y. C. Leong, “Converting baluns into broad-band impedance-transforming 180 hybrids,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 8, pp. 1990–1995, Aug. 2002.
[13]. Z. Xu, and L. MacEachern, “Optimum Design of Wideband Compensated and Uncompensated Marchand Baluns With Step Transformers,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 8, pp. 2064–2071, Aug. 2009.
[14]. X. Lan, F. Fong, M. Kintis, K. Kono, D. Yamauchi, W. B. Luo, and D. Farkas, “An Ultra-Wideband Balun Using Multi-Metal GaAs MMIC Technology,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp. 474–476, Aug. 2010.
[15]. H. L. Lee, D. Z. Kim, W. G. Lim, M. Q. Lee, and J. W. Yu, “Miniaturized Lumped-Distributed Wideband Balun Using Double-Sided CPW Structure,” in 39rd European Microwave Conference, 2009, pp. 1171–1174.
[16]. T.-G. Ma and Y.-T. Cheng, “A Miniaturized Multilayered Marchand Balun Using Coupled Artificial Transmission Lines,” IEEE Microw. Wireless Compon. Lett., vol. 19, July 2009, pp. 446-448.
[17]. C. I. Shie, Y. H. Pan, K. S. Chin, and Y. C. Chiang, “A Miniaturized Microstrip Balun Constructed With Two λ/8 Coupled Lines and a Redundant Line,” IEEE Microw. Wireless Compon. Lett., vol. 20, December 2010, pp. 663-665.
[18]. T. G. Ma, C. C. Wang, and C. H. Lai, “Miniaturized Distributed Marchand Balun Using Coupled Synthesized CPWs,” IEEE Microw. Wireless Compon. Lett., vol. 21, April 2011, pp. 188-190.
[19]. R. K. Mongia, I. J. Bahl, P. Bhartia, and J. Hong, RF and Microwave Coupled-Line Circuits, 2nd ed., Artech House Publishers, 2007.
[20]. R. M. Osmani, “Synthesis of Lange Couplers,” IEEE Trans. Microw. Theory Tech., vol. 29, pp. 168–170, Feb. 1981.
[21]. S. K. Koul and B. Bhat, “Broadside, Edge-Coupled, Symmetric Strip Transmission Lines, ” IEEE Trans. Microw. Theory Tech., vol. 30, pp. 1874–1880, Nov. 1982.
[22]. F. Mernyei and H. Matsuura, “A new broadside-offset coupler using CPW and microstrip lines, ” in 23rd European Microwave Conference, 1993, pp. 617–620.
[23]. M. Nedil, T. A. Denidni, and L. Talbi, “Novel butler matrix using CPW multilayer technology, ” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 499–507, Jan. 2006.
[24]. C. H. Chi and C. Y. Chang, “A New Class of Wideband Multisection 180 Hybrid Rings Using Vertically Installed Planar Couplers,” IEEE Trans. Microw. Theory Tech., vol. 54, pp. 2478–2486, Jun. 2006.
[25]. Uysal, S., and H. Aghvami, “Synthesis, Design, and Construction of Ultra-Wide-band Nonuniform Quadrature Directional Couplers in Inhomogeneous Media, ” IEEE Trans. Microw. Theory Tech., vol. 37, pp. 969–976, Jun. 1989.
[26]. M. Dydyk, “Microstrip Directional Couplers with Ideal Performance via Single-Element Compensation,” IEEE Trans. Microw. Theory Tech., vol. 47, pp. 956–964, Jun. 1999.
[27]. L. Suo, T. Itoh and J. Rivera, “Design of an Overlay Directional Coupler by a Full-Wave Analysis,” IEEE Trans. Microw. Theory Tech., vol. 31, pp. 1017–1022, Dec. 1983.
[28]. C. C. Wang, C. H. Lai, and T. G. Ma, “Miniaturized coupled-line couplers using uniplanar synthesized coplanar waveguides,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 8, pp. 2266–2276, Aug. 2010.

QR CODE