簡易檢索 / 詳目顯示

研究生: 邵暄
Nila - Cynthia Dewi
論文名稱: 結合粒子群演算法與群體漸進學習法於製造單元之規劃
A hybrid of Particle Swarm Optimization and Population Based Incremental Learning in Cell Formation
指導教授: 歐陽超
Chao Ou-Yang
口試委員: 郭人介
Ren-Jieh Kuo
楊朝龍
Chao-Lung Yang
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 55
中文關鍵詞: 結合粒子群演算法群體漸進學習法製造單元規劃
外文關鍵詞: population based incremental learning, cell formation
相關次數: 點閱:190下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 製造單元分群問題一職都是彈性製造系統規劃中一個重要問題,本研究提出一結合粒子群演算法與群體漸進學習法之啟發式演算法並將其運用於製造單元規劃之問題。該演算法藉著機台編碼及比較工件途程之相似性將工件分類及機台分群以達到將製造單元系統功效最佳化之目的。本研究並運用十個測試問題與其他演算法比較。結果顯示本研究所提出之整合試驗算法在六個問題中表現最佳。尤其是在較小的機台工件問題中,本研究所提出之方法表現出大幅度改善。


    The development of meta-heuristics has received great interest in recent years. Several methods have been implemented in cell formation. In this thesis book, the problem of grouping parts into families; and machines into cells are considered with the objective of maximizing the grouping efficacy. A hybrid of particle swarm optimization and population-based incremental learning (PBILSO) is proposed and used for solving this problem. The proposed algorithm uses a modification of permutation with separator encoding scheme and similarity measure is used to evaluate similarity between parts as an index for assigning parts to cells. A set of 10 test problems with various sizes from literatures are used to test the performance of both algorithms. The Taguchi method is used for determining the initialization parameters. Numerical experiments have proved that the proposed method can increase the grouping efficacy for 60% cases and 10% near optimal than other algorithms in several references. It is also proved that the hybrid can generate more convergence result so that the number of hits increasing and able to group the machine and part into cells simultaneously.

    ABSTRACT iii ACKNOWLEDGMENT iv CONTENTS v LIST OF FIGURES vii LIST OF TABLES viii CHAPTER I - INTRODUCTION 1 1.1 Background 1 1.2 Research Objective 2 1.3 Scope and Assumptions 2 1.4 Organization of Research 2 CHAPTER II - LITERATURE REVIEW 3 2.1. Cell Formation 3 2.2 Grouping Efficacy 3 2.3 Grouping Efficacy Redevelopment Concept 4 2.4 Meta-Heuristic Concept 8 2.4.1 Particle Swarm Optimization Algorithm 8 2.4.2 Population Based Incremental Learning Algorithm 9 CHAPTER III - METHODOLOGY 11 3. The proposed hybrid method 11 3.1. Step 1: Parameter Setting 15 3.1.1 Step 1.1: Parameter Setting for PSO Algorithm 15 3.1.2 Step 1.2: Parameter Setting for PBIL Algorithm 16 3.1.3 Step 1.3: Parameter Setting for Hybrid Algorithm 19 3.2. Step 2: Generate PV0 21 3.3. Step 3: Generate p 21 3.4 Step 4: Assignment Process 22 3.4.1 Step 4.1: Part Assignment Process 22 3.4.2 Step 4.2: Machine Assignment Process 23 3.5 Step 5: Evaluate fitness function and rank the best particle for the first time 25 3.6 Step 6: Hybrid Process 26 CHAPTER IV – EXPERIMENTS ANALYSIS AND DISCUSSION 31 4.1 Parameter Analysis 31 4.2 Computational results in cell formation cases 33 CHAPTER V – CONCLUSIONS 41 5.1. Conclusions 41 5.2 Future Research 42 REFERENCES 43 APPENDIX 48

    Anvari, M., Mehrabad, M. S., & Barzinpour, F. (2010). Machine-part cell formation using a hybrid particle swarm optimization. International Journal Advance Manufacture Technology, 47, 745–754.
    AS, C. (1973). A numerical taxonomy appliedto group technology and plant layout. International Journal of Production Research, 11(4), 399–416.
    Bai, Q. (2010). Analysis of Particle Swarm Optimization Algorithm. Journal of Computer and Information Science (CCSE), 3(1), 180–184.
    Baluja, S. (1994). Population-based incremental learning: a method for integrating genetic search based function optimization and competitive learning. Carnegie Mellon University, Pittsburgh, PA.
    Baluja, Shumeet, & Davies, S. (1997). Using Optimal Dependency-Trees for Combinatorial Optimization : Learning the Structure of the Search Space.
    Black, J. (1983). Cellular Manufacturing Systems Reduce Setup Time, Make Small Lot Production Economical. Industrial Engineering, 36–48.
    Boctor, F. F. (1991). A linear formation of the machine-part cell formation problem. International Journal of Production Research, 29(2), 343–356.
    Bratton, D., & Kennedy, J. (2007). Defining a Standard for Particle Swarm Optimization. 2007 IEEE Swarm Intelligence Symposium, 120–127. doi:10.1109/SIS.2007.368035
    Brownlee, J. (2013). Clever Algorithms: Nature-Inspired Programming Recipes. Retrieved from http://www.cleveralgorithms.com/nature-inspired/probabilistic/pbil.html
    Cabrera-Rios, Mauricio, Mount-Campbell, A, C., & A Irani, S. (2002). An approach to the design of a manufacturing cell under economic considerations. International Journal of Production Economics, 78, 223–237.
    CC, C., Chung, S., & Wu, T. (2011). An efficient tabu search algorithm to the cell formation problem with alternative routings and machine reliability considerations. Computers & Industrial Engineering, 60, 7–15.
    Chandrasekharan, K. C. S. (1990). Grouping efficacy: a quantitative criterion for goodness of block diagonal forms of binary matrices in group technology. International Journal of Production Research, 28, 233–243.
    Chandrasekharan MP, R. R. (1986). MODROC: An extension of rank order clustering for group technology. International Journal of Production Research, 24(5), 1221–1233.
    D.M, M. (1999). Um Novo Algoritmo Evolucionario com Aprendizado LVQ para a Otimizacao de Problemas Combinatorios como a Recarga de Reatores Nucleares.
    Dobslaw, F. (2010). A Parameter Tuning Framework for Metaheuristics Based on Design of Experiments and Artificial Neural Networks. In Proceeding of the International Conference on Computer Mathematics and Natural Computing (pp. 1–4).
    Dr, J., & MA, B. (1991). Solving partitioning problems with genetic algorithms. Proceedings of the Fourth International Conference on Genetic Algorithm, 442–9.
    Drira, A., Pierreval, H., & Hajri-Gabouj, S. (2007). Facility layout problems: A survey. Annual Reviews in Control, 31(2), 255–267. doi:10.1016/j.arcontrol.2007.04.001
    Folly, K., & Venayagamoorthy, G. K. (2009). Effects of learning rate on the performance of the population based incremental learning algorithm. In 2009 International Joint Conference on Neural Networks (pp. 861–868). Ieee. doi:10.1109/IJCNN.2009.5179080
    Gibson, C. B., Randel, A. E., & Earley, P. C. (2000). Understanding Group Efficacy An Empirical Test of Multiple Assessment Methods. SAGE Journal, 25, 67–97.
    Goncalves, J. F., & Resende, M. G. C. (2004). An evolutionary algorithm for manufacturing cell formation. Computers & Industrial Engineering, 47(2-3), 247–273. doi:10.1016/j.cie.2004.07.003
    Hutchison, D., & Mitchell, J. C. (2011). Learning and Intelligent Optimization (5th International Conference). (J. van Goos, Gerhard., Hartmanis, Juris., Leeuwen, Ed.) (p. 380). Rome, Italy: Springer.
    James, T. L., Brown, E. C., & Keeling, K. B. (2007). A hybrid grouping genetic algorithm for the cell formation problem. Computers and Operations Research, 34, 2059– 2079.
    Joan-Arinyo, R., Luzon, M. ., & Yeguas, E. (2011). Parameter tuning of PBIL and CHC evolutionary algorithms applied to solve the Root Identification Problem. Applied Soft Computing, 11(1), 754–767. doi:10.1016/j.asoc.2009.12.037
    JR, K., & V, N. (1982). Machine-component group formation in group technology: review and extension. International Journal of Production Research, 20(2), 117–33.
    Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of IEEE International Conference of Neural Network (pp. 1942–1948). USA: Piscataway.
    King, J. R. (1980). Machine-component grouping in production flow analysis : an approach using a rank order clustering algorithm. International Journal of Production Research, 18 (2), 213–232.
    Lee, K., & Ahn, K.-I. (2013). GT efficacy: a performance measure for cell formation with sequence data. International Journal of Production Research, (September), 1–12. doi:10.1080/00207543.2013.794317
    McCormick, W. T., Schweitzer, P. J., & White, T. W. (1972). Problem decomposition and data reorganization by a clustering technique. Operations Research, 20(5), 993–1009.
    Megala, N., & Rajendran, C. (2008). An ant colony algorithm for cell-formation in cellular manufacturing systems. European Journal of Industrial Engineering, 2(3), 298–335.
    Navalertporn, T., & Afzulpurkar, N. V. (2011). Optimization of tile manufacturing process using particle swarm optimization. Swarm and Evolutionary Computation, 1(2), 97–109. doi:10.1016/j.swevo.2011.05.003
    Noktehdan, A., Karimi, B., & Kashan, A. H. (2010). A differential evolution algorithm for the manufacturing cell formation problem using group based operators. Expert Systems with Applications, 37(7), 4822–4829.
    Onwubolu, G., & Mutingi, M. (2001). A genetic algorithm approach to cellular manufacturing systems. Computers & Industrial Engineering, 39, 125–144.
    Pai, P. ., Chang, P. ., & Lee, S. . (2005). Part-machine family formation using genetic algorithms in a fuzzy environment. International Journal Advanced Manufacturing Technology, 25, 1175–1179.
    Pailla, A., Trindade, A. R., Parada, V., & Ochi, L. S. (2010). A numerical comparison between simulated annealing and evolutionary approaches to the cell formation problem. Expert Systems with Applications, 37(7), 5476–5483. doi:10.1016/j.eswa.2010.02.064
    Papaioannou, G., & Wilson, J. M. (2010). The evolution of cell formation problem methodologies based on recent studies (1997–2008): Review and directions for future research. European Journal of Operational Research, 206(3), 509–521. doi:10.1016/j.ejor.2009.10.020
    Paydar, M. M., & Saidi-Mehrabad, M. (2013). A hybrid genetic-variable neighborhood search algorithm for the cell formation problem based on grouping efficacy. International Journal of Computers and Operation Research, 40(4), 980–990. doi:10.1016/j.cor.2012.10.016
    Pescosolido, A. T. (2003). Group Efficacy And Group Effectiveness: The Effects of Group Efficacy Over Time on Group Performance and Development. SAGE Journal, 34, 20–42.
    Phadke, M. (1989). Quality engineering using robust design. Prentice-Hall International.
    R, K., & A, V. (1987). A strategic subcontracting for efficient disaggregated manufacturing. International Journal of Production Research, 25(12), 1715–28.
    Ross, P. J. (2008). Taguchi Techniques for Quality Engineering (Second Edi., p. 43). McGraw-Hill International Editions.
    Sarker, B. R. (2001). Measures of grouping efficiency in cellular manufacturing systems. European Journal of Operational Research, 130, 588–611.
    Schmidt, M., Kristensen, K., & Jensen, T. R. (1999). Adding genetics to the standard PBIL algorithm. Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), 1527–1534. doi:10.1109/CEC.1999.782665
    Shakya, S. K. (2006). DEUM : A framework for an Estimation of Distribution Algorithm based on Markov Random.
    Srinlvasan, G., Narendran, T. T., & Mahadevan, B. (1990). An assignment model for the part-families problem in group technology. International Journal of Production Research. doi:10.1080/00207549008942689
    Stanfel, L. E. (1985). Machine clustering for economic production. Engineering Costs and Production Economics, 9, 73–81.
    Stawowy, A. (2006). Evolutionary strategy for manufacturing cell design. The International Journal of Management Science, 34(1), 1–18. doi:10.1016/j.omega.2004.07.016
    Tariq, A., Hussain, I., & Ghafoor, A. (2007). Consideration of Single Machine Cells in Designing Cellular Manufacturing System using a Hybrid Genetic Algorithm. IEEE, 1–5.
    Tunnukij, T., & Hicks, C. (2009). An Enhanced Grouping Genetic Algorithm for Solving the cell formation problem. International Journal of Production Research, 47(7), 1989–2007.
    Utamima, A. (2012). Artificial Particle Swarm Optimization for Solving Single Row Facility Layout Problem.
    Waghodekar, P. H., & Sahu, S. (1984). Machine-component cell formation in group technology : MACE. International Journal of Production Research, 22 (6), 937–948.
    Wemmerlov, Urban. Hyer, N. L. (1987). Research issues in cellular manufacturing. International Journal of Production Research, 25(3), 413–431.
    Wu, J., Chang, P., & Chen, H. (2012). Combine a Population-based Incremental Learning with Artificial Immune System for Intrusion Detection System. World Academy of Science, Engineering and Technology, 65, 736–741.
    Wu, Tai - Hsi, Chang, C.-C., & Chung, S.-H. (2008). A simulated annealing algorithm for manufacturing cell formation problems. Expert Systems with Applications, 34(3), 1609–1617. doi:10.1016/j.eswa.2007.01.012
    Wu, Tai-Hsi, Chang, C.-C., & Yeh, J.-Y. (2009). A hybrid heuristic algorithm adopting both Boltzmann function and mutation operator for manufacturing cell formation problems. International Journal of Production Economics, 120(2), 669–688. doi:10.1016/j.ijpe.2009.04.015

    QR CODE