簡易檢索 / 詳目顯示

研究生: 黃國禎
Guo-Zhen Huang
論文名稱: 液珠分選系統之初始驗證
Pilot Study of Droplet Sorting Technology
指導教授: 曾修暘
Hsiu-Yang Tseng
口試委員: 林顯群
田維欣
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 70
中文關鍵詞: 液珠微流體液珠分選電場
外文關鍵詞: Droplet microfluidics, Droplet sorting, Electric
相關次數: 點閱:228下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究作為主動式微流液珠分選技術(Droplet sorting microfluidics)之優化與延伸,以簡單的電控系統搭配高度靈活性的電極設計,解決此領域的兩大難題:(1)液珠分選的通量極限、(2)複雜的電控系統控制。此研究展示高通量的液珠分選系統,具備三通道、易製作、低成本、非直接接觸電極之優點,展現應用於微流體領域的高度實用性,特別是螢光激發液珠分選系統(Fluorescence active droplet sorter, FADS)及微全分析系統(Micro total analysis system, μTAS)。利用聚焦型流道(Flow-focusing injection)將水珠形成在油中稱為液珠,接著高壓電源供應器施加靜電場於由液態金屬所製作的非接觸式立體電極,液珠在生成時受到電場的影響下產生偏移並流入分選流道中完成分選機制,可有效提升通量限制且避免過於複雜的電極設計與電控系統。實驗數據的測定使用高速攝影機實現對液珠分選機制的影像分析,利用影像處理逐幀分析驗證分選機制並找出不同參數下的液珠生成與電場之間的關係,參數包含液珠通量、大小、型態、軌跡及電場強度。最後,在每秒生成3800顆液珠下實現分選,驗證系統之實用性。


As an improvement and extension of active droplet sorting microfluidics, this study uses a simple electric control system and highly flexible electrode design to overcome two challenges:(1) throughput limitation, (2) complex control system. This research presents a simple, inexpensive, ease to fabricate, non-charged, high-throughput, triple droplet sorter which is highly promising for the droplet-based microfluidic platform and able to benefit for a wide range of applications, especially in fluorescence-activated droplet sorting system (FADS) and micro total analysis system (μTAS). W/O (water in oil) droplets are generated via flow-focusing injection and are deflected into sorting outlets while droplets are forming. Electric field is supplied on the three-dimensional (3D) liquid metal electrodes, which are not in contact with fluid, by high-voltage power supply. This system not only improves sorting throughput significantly but avoids complex electric control. High-speed camera is utilized to record the process of droplets manipulation and data is obtained by image processing software. The relationship between electric field and droplet generation (e.g., throughput, size, morphology, trajectory) is found after analyzing. Finally, droplet sorting at 3800 droplets/s is achieved successfully.

摘要 Abstract 致謝 圖目錄 表目錄 第1章 緒論 1.1. 前言 1.2. 液珠操控介紹 (I) 被動式液珠操控方法 (II) 主動式液珠操控方法 1.3. 文獻回顧 1.3.1. 液珠分選系統之分類 (I) 直接充電型分選系統 (II) 介電泳型分選系統 (III) 電濕潤型分選系統 1.3.2. 液珠分選領域之關鍵挑戰 1.4. 研究目的與動機 第2章 實驗方法 2.1. 實驗架設 2.1.1. 微流系統設計 2.1.2. 微流裝置之備製 2.1.3. 液珠生成與操控 2.1.4. 可視化及數據攝取 2.2. 液珠分選原理 2.3. 實驗流程 2.4. 影像分析 第3章 結果與討論 3.1. 分選器之功能與效能 3.2. 液珠大小與電壓之關係 3.3. 通量與電壓之關係 3.4. 液珠間距與電壓之關係 3.5. 分選機制及性能 第4章 結論與未來展望 參考文獻 附錄 A. 設備列表 B. 程式設計 (I) LabVIEW影像分析 (II) MATLAB曲線擬合

[1] Teh, S. Y., Lin, R., Hung, L. H., &Lee, A. P. (2008). Droplet microfluidics. In Lab on a Chip (Vol. 8, Issue 2, pp. 198–220). Royal Society of Chemistry. https://doi.org/10.1039/b715524g
[2] Chou, W. L., Lee, P. Y., Yang, C. L., Huang, W. Y., & Lin, Y. S. (2015). Recent advances in applications of droplet microfluidics. Micromachines, 6(9), 1249-1271. https://doi.org/10.3390/mi6091249
[3] Suea-Ngam, A., Howes, P. D., Srisa-Art, M., &Demello, A. J. (2019). Droplet microfluidics:From proof-of-concept to real-world utility? Chemical Communications, 55(67), 9895–9903. https://doi.org/10.1039/c9cc04750f
[4] Sohrabi, S., Kassir, N., &Keshavarz Moraveji, M. (2020). Droplet microfluidics:Fundamentals and its advanced applications. RSC Advances, 10(46), 27560–27574. https://doi.org/10.1039/d0ra04566g
[5] Barea, J. S., Lee, J., &Kang, D. K. (2019). Recent advances in droplet-based microfluidic technologies for biochemistry and molecular biology. In Micromachines (Vol. 10, Issue 6). MDPI AG. https://doi.org/10.3390/mi10060412
[6] Joensson, H. N., &Andersson Svahn, H. (2012). Droplet microfluidics-A tool for single-cell analysis. In Angewandte Chemie - International Edition (Vol. 51, Issue 49, pp. 12176–12192). https://doi.org/10.1002/anie.201200460
[7] Kang, D. K., Monsur Ali, M., Zhang, K., Pone, E. J., &Zhao, W. (2014). Droplet microfluidics for single-molecule and single-cell analysis in cancer research, diagnosis and therapy. In TrAC - Trends in Analytical Chemistry (Vol. 58, pp. 145–153). Elsevier B.V. https://doi.org/10.1016/j.trac.2014.03.006
[8] Matuła, K., Rivello, F., &Huck, W. T. S. (2020). Single-Cell Analysis Using Droplet Microfluidics. In Advanced Biosystems (Vol. 4, Issue 1). Wiley-VCH Verlag. https://doi.org/10.1002/adbi.201900188
[9] Vallejo, D., Nikoomanzar, A., Paegel, B. M., &Chaput, J. C. (2019). Fluorescence-Activated Droplet Sorting for Single-Cell Directed Evolution. ACS Synthetic Biology, 8(6), 1430–1440. https://doi.org/10.1021/acssynbio.9b00103
[10] Caen, O., Schütz, S., Jammalamadaka, M. S. S., Vrignon, J., Nizard, P., Schneider, T. M., Baret, J. C., &Taly, V. (2018). High-throughput multiplexed fluorescence-activated droplet sorting. Microsystems and Nanoengineering, 4(1). https://doi.org/10.1038/s41378-018-0033-2
[11] Vallejo, D., Nikoomanzar, A., Paegel, B. M., &Chaput, J. C. (2019). Fluorescence-Activated Droplet Sorting for Single-Cell Directed Evolution. ACS Synthetic Biology, 8(6), 1430–1440. https://doi.org/10.1021/acssynbio.9b00103
[12] Li, M., Liu, H., Zhuang, S., &Goda, K. (2021). Droplet flow cytometry for single-cell analysis. In RSC Advances (Vol. 11, Issue 34, pp. 20944–20960). Royal Society of Chemistry. https://doi.org/10.1039/d1ra02636d
[13] Gielen, F., Hours, R., Emond, S., Fischlechner, M., Schell, U., &Hollfelder, F. (2016). Ultrahigh-throughput-directed enzyme evolution by absorbance-activated droplet sorting (AADS). Proceedings of the National Academy of Sciences of the United States of America, 113(47), E7383–E7389. https://doi.org/10.1073/pnas.1606927113
[14] Sesen, M., Alan, T., &Neild, A. (2017). Droplet control technologies for microfluidic high throughput screening (μHTS). In Lab on a Chip (Vol. 17, Issue 14, pp. 2372–2394). Royal Society of Chemistry. https://doi.org/10.1039/c7lc00005g
[15] Goto, H., Kanai, Y., Yotsui, A., Shimokihara, S., Shitara, S., Oyobiki, R., Fujiwara, K., Watanabe, T., Einaga, Y., Matsumoto, Y., Miki, N., &Doi, N. (2020). Microfluidic screening system based on boron-doped diamond electrodes and dielectrophoretic sorting for directed evolution of NAD(P)-dependent oxidoreductases. Lab on a Chip, 20(4), 852–861. https://doi.org/10.1039/c9lc01263j
[16] Choe, G., Park, J., Park, H., & Lee, J. Y. (2018). Hydrogel biomaterials for stem cell microencapsulation. Polymers, 10(9), 997. https://www.mdpi.com/2073-4360/10/9/997
[17] Chong, Z. Z., Tan, S. H., Gañán-Calvo, A. M., Tor, S. B., Loh, N. H., &Nguyen, N. T. (2016). Active droplet generation in microfluidics. In Lab on a Chip (Vol. 16, Issue 1, pp. 35–58). Royal Society of Chemistry. https://doi.org/10.1039/c5lc01012h
[18] Xi, H. D., Zheng, H., Guo, W., Gañán-Calvo, A. M., Ai, Y., Tsao, C. W., Zhou, J., Li, W., Huang, Y., Nguyen, N. T., &Tan, S. H. (2017). Active droplet sorting in microfluidics:a review. Lab on a Chip, 17(5), 751–771. https://doi.org/10.1039/c6lc01435f
[19] Rashid, Z., Erten, A., Morova, B., Muradoglu, M., Jonáš, A., &Kiraz, A. (2019). Passive sorting of emulsion droplets with different interfacial properties using laser-patterned surfaces. Microfluidics and Nanofluidics, 23(5). https://doi.org/10.1007/s10404-019-2236-8
[20] Zhu, P., &Wang, L. (2017). Passive and active droplet generation with microfluidics:a review. Lab on a Chip, 17(1), 34–75. https://doi.org/10.1039/C6LC01018K
[21] Jing, T., Ramji, R., Warkiani, M. E., Han, J., Lim, C. T., &Chen, C. H. (2015). Jetting microfluidics with size-sorting capability for single-cell protease detection. Biosensors and Bioelectronics, 66, 19–23. https://doi.org/10.1016/j.bios.2014.11.001
[22] Tottori, N., Hatsuzawa, T., &Nisisako, T. (2017). Separation of main and satellite droplets in a deterministic lateral displacement microfluidic device. RSC Advances, 7(56), 35516–35524. https://doi.org/10.1039/c7ra05852g
[23] Hatch, A. C., Patel, A., Beer, N. R., &Lee, A. P. (2013). Passive droplet sorting using viscoelastic flow focusing. Lab on a Chip, 13(7), 1308–1315. https://doi.org/10.1039/c2lc41160a
[24] Robert De Saint Vincent, M., Wunenburger, Ŕ., &Delville, J. P. (2008). Laser switching and sorting for high speed digital microfluidics. Applied Physics Letters, 92(15). https://doi.org/10.1063/1.2911913
[25] Yap, Y. F., Tan, S. H., Nguyen, N. T., Murshed, S. M. S., Wong, T. N., &Yobas, L. (2009). Thermally mediated control of liquid microdroplets at a bifurcation. Journal of Physics D:Applied Physics, 42(6). https://doi.org/10.1088/0022-3727/42/6/065503
[26] Zhang, K., Liang, Q., Ma, S., Mu, X., Hu, P., Wang, Y., &Luo, G. (2009). On-chip manipulation of continuous picoliter-volume superparamagnetic droplets using a magnetic force. Lab on a Chip, 9(20), 2992–2999. https://doi.org/10.1039/b906229g
[27] Surenjav, E., Priest, C., Herminghaus, S., &Seemann, R. (2009). Manipulation of gel emulsions by variable microchannel geometry. Lab on a Chip, 9(2), 325–330. https://doi.org/10.1039/b808160c
[28] Li, S., Ding, X., Guo, F., Chen, Y., Lapsley, M. I., Lin, S. C. S., Wang, L., McCoy, J. P., Cameron, C. E., &Huang, T. J. (2013). An On-chip, multichannel droplet sorter using standing surface acoustic waves. Analytical Chemistry, 85(11), 5468–5474. https://doi.org/10.1021/ac400548d
[29] Schmid, L., Weitz, D. A., &Franke, T. (2014). Sorting drops and cells with acoustics:Acoustic microfluidic fluorescence-activated cell sorter. Lab on a Chip, 14(19), 3710–3718. https://doi.org/10.1039/c4lc00588k
[30] Abate, A. R., Agresti, J. J., &Weitz, D. A. (2010). Microfluidic sorting with high-speed single-layer membrane valves. Applied Physics Letters, 96(20). https://doi.org/10.1063/1.3431281
[31] Cao, Z., Chen, F., Bao, N., He, H., Xu, P., Jana, S., Jung, S., Lian, H., &Lu, C. (2013). Droplet sorting based on the number of encapsulated particles using a solenoid valve. Lab on a Chip, 13(1), 171–178. https://doi.org/10.1039/c2lc40950j
[32] Sciambi, A., &Abate, A. R. (2015). Accurate microfluidic sorting of droplets at 30 kHz. Lab on a Chip, 15(1), 47–51. https://doi.org/10.1039/c4lc01194e
[33] Schütz, S. S., Beneyton, T., Baret, J. C., &Schneider, T. M. (2019). Rational design of a high-throughput droplet sorter. Lab on a Chip, 19(13), 2220–2232. https://doi.org/10.1039/c9lc00149b
[34] Isozaki, A., Nakagawa, Y., Loo, M. H., Shibata, Y., Tanaka, N., Setyaningrum, D. L., Park, J.-W., Shirasaki, Y., Mikami, H., Huang, D., Tsoi, H., Riche, C. T., Ota, T., Miwa, H., Kanda, Y., Ito, T., Yamada, K., Iwata, O., Suzuki, K., …Goda, K. (2020). Sequentially addressable dielectrophoretic array for high-throughput sorting of large-volume biological compartments. Science advances, 6(22), eaba6712. http://advances.sciencemag.org
[35] Isozaki, A., Huang, D., Nakagawa, Y., &Goda, K. (2021). Dual sequentially addressable dielectrophoretic array for high-throughput, scalable, multiplexed droplet sorting. Microfluidics and Nanofluidics, 25(4). https://doi.org/10.1007/s10404-021-02432-z
[36] Pit, A. M., deRuiter, R., Kumar, A., Wijnperlé, D., Duits, M. H. G., &Mugele, F. (2015). High-throughput sorting of drops in microfluidic chips using electric capacitance. Biomicrofluidics, 9(4). https://doi.org/10.1063/1.4928452
[37] Ahn, B., Lee, K., Louge, R., &Oh, K. W. (2009). Concurrent droplet charging and sorting by electrostatic actuation. Biomicrofluidics, 3(4). https://doi.org/10.1063/1.3250303
[38] Guo, F., Ji, X. H., Liu, K., He, R. X., Zhao, L. B., Guo, Z. X., Liu, W., Guo, S. S., &Zhao, X. Z. (2010). Droplet electric separator microfluidic device for cell sorting. Applied Physics Letters, 96(19). https://doi.org/10.1063/1.3360812
[39] Rao, L., Cai, B., Yu, X. L., Guo, S. S., Liu, W., &Zhao, X. Z. (2015). One-step fabrication of 3D silver paste electrodes into microfluidic devices for enhanced droplet-based cell sorting. AIP Advances, 5(5). https://doi.org/10.1063/1.4921317
[40] Rao, L., Cai, B., Wang, J., Meng, Q., Ma, C., He, Z., Xu, J., Huang, Q., Li, S., Cen, Y., Guo, S., Liu, W., &Zhao, X. Z. (2015). A microfluidic electrostatic separator based on pre-charged droplets. Sensors and Actuators, B:Chemical, 210, 328–335. https://doi.org/10.1016/j.snb.2014.12.057
[41] Tan, S. H., Semin, B., &Baret, J. C. (2014). Microfluidic flow-focusing in ac electric fields. Lab on a Chip, 14(6), 1099–1106. https://doi.org/10.1039/c3lc51143j
[42] Huang, Y., Wang, Y. L., &Wong, T. N. (2017). AC electric field controlled non-Newtonian filament thinning and droplet formation on the microscale. Lab on a Chip, 17(17), 2969–2981. https://doi.org/10.1039/c7lc00420f
[43] Singh, R., Bahga, S. S., &Gupta, A. (2020). Electrohydrodynamic droplet formation in a T-junction microfluidic device. Journal of Fluid Mechanics, 905. https://doi.org/10.1017/jfm.2020.749
[44] Yin, S., Huang, Y., Wong, T. N., &Ooi, K. T. (2020). Dynamics of droplet in flow-focusing microchannel under AC electric fields. International Journal of Multiphase Flow, 125. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103212
[45] Teo, A. J. T., Yan, M., Dong, J., Xi, H. D., Fu, Y., Tan, S. H., &Nguyen, N. T. (2020). Controllable droplet generation at a microfluidic T-junction using AC electric field. Microfluidics and Nanofluidics, 24(3). https://doi.org/10.1007/s10404-020-2327-6
[46] Lee, D., Hwang, B., & Kim, B. (2016). The potential of a dielectrophoresis activated cell sorter (DACS) as a next generation cell sorter. Micro and Nano Systems Letters, 4(1), 1-10. https://mnsl-journal.springeropen.com/articles/10.1186/s40486-016-0028-4
[47] Kaminski, T. S., Scheler, O., &Garstecki, P. (2016). Droplet microfluidics for microbiology:Techniques, applications and challenges. In Lab on a Chip (Vol. 16, Issue 12, pp. 2168–2187). Royal Society of Chemistry. https://doi.org/10.1039/c6lc00367b
[48] Gersteltec Sarl. (2005). GM 1070 Datasheet
[49] Lakshminarayanan, S. (2018). Micro/nano patterning on polymers using soft lithography technique. Micro/Nanolithography:A Heuristic Aspect on the Enduring Technology, 69.
[50] Kaur, G. (Ed.). (2018). Biomedical, therapeutic and clinical applications of bioactive glasses. Woodhead Publishing.
[51] Xiong, L., Chen, P., & Zhou, Q. (2014). Adhesion promotion between PDMS and glass by oxygen plasma pre-treatment. Journal of Adhesion Science and Technology, 28(11), 1046-1054.
[52] Cubaud, T., Jose, B. M., & Darvishi, S. (2011). Folded micro-threads: Role of viscosity and interfacial tension. Physics of Fluids, 23(4), 042002.

無法下載圖示 全文公開日期 2032/01/19 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE