簡易檢索 / 詳目顯示

研究生: 游善淳
Shan-Chuen Yu
論文名稱: 利用有限元素法探討中空型椎弓根螺絲之彎曲強度與骨咬合強度
Biomechanical Studies for Bending Strength and Bone Holding Power of Cannulated Pedicle Screws Using Finite Element Methods
指導教授: 徐慶琪
Ching-Chi Hsu
口試委員: 趙振綱
Ching-Kong Chao
林峻立
Chun-Li Lin
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 93
中文關鍵詞: 骨水泥有限元素法中空椎弓根螺絲椎體成型術骨質疏鬆
外文關鍵詞: Bone cement, Finite Element Methods, Cannulated pedicle screws, Osteoporosis, Vertebroplasty
相關次數: 點閱:284下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於近年來人口老化的趨勢越來越嚴重,而這種趨勢將導致許多人可能患有跟年齡相關的骨科疾病,其中以骨質疏鬆症為最常見,而在患有骨質疏鬆症的病患,通常發生骨折的機率相當的高,而且在治療時都會使椎弓根螺絲的咬合能力大幅的降低,同時也提高鬆脫的風險性。近年來已經有研究提出一種新型的椎體成型術(Vertebroplasty),為使用中空椎弓根螺絲結合骨水泥固定椎體,以達到增加椎弓根螺絲咬合能力的效果,而椎弓根螺絲原本在脊椎內固定器中就是屬於較易發生破壞的元件,所以若是使用中空型的椎弓根螺絲將會增加椎弓根螺絲破壞的可能性。目前為止,尚未有人探討這種中空型椎弓根螺絲的強度。本文將以有限元素分析方式,探討中空型椎弓根螺絲之彎曲強度與骨咬合強度進行模擬分析。
    以市售繪圖軟體SolidWork 2008建立彎曲強度模型與骨咬合強度模型,而模型繪製完成後,匯入市售有限元素分析軟體ANSYS Workbench 11進行有限元素分析,其在彎曲強度的部份,探討三種不同類型的椎弓根螺絲(實心椎弓根螺絲、中空型椎弓根螺絲以及中空型椎弓根螺絲鎖入銷),並且分析圓錐型與圓柱型這兩種不同類型的椎弓根螺絲;而在骨咬合強度的部份,則是分析骨水泥在不同位置之最大拉出強度,並且也探討了圓錐型與圓柱型椎弓根螺絲,而在圓錐型椎弓根螺絲,考慮了有無骨壓縮效應,將進行參數化分析以及靈敏度分析。
    從分析結果中發現,在於彎曲強度模型中,中空圓錐型椎弓根螺絲相較於中空圓柱型椎弓根螺絲有較佳的抗彎曲強度,且中空圓柱型椎弓根螺絲鎖入銷相較於中空圓柱型螺絲,有顯著的提高螺絲的抗彎曲強度;在於骨咬合強度模型中,發現骨水泥越靠近螺絲近端處,其會有較佳的拉出強度,並且在考慮骨壓縮效應之模型會優於未考慮骨壓縮效應之模型。而本研究所建立的數值模型,可以有效的預測中空型椎弓根螺絲之彎曲強度與骨咬合強度,且這些模型在於產品的開發與設計上能夠減少時間與人力。


    The tendency of population aging has become more and more serious in recent years. This tendency will lead many people to suffer from orthopedic diseases such as osteoporosis. Anchoring pedicle screws on osteoporotic spine is a challenge work, especially in patients with very low bone mineral density (BMD). Cannulated pedicle screws with injection of bone cement might be useful method to improve their bone holding power. However, the biomechanical performance of cannulated pedicle screws for the bone holding power was unclear. In addition, the pedicle screws are the weakest part of the spinal implants. Unfortunately, screw failure would become more serious when cannulated pedicle screws were used. Thus, the purpose of this study was to investigate the bending strength and bone holding power of cannulated pedicle screws with different screw designs using finite element methods.
    Two types of the finite element models, which consisted of the bending strength models and the bone holding power models, were constructed and analyzed using SolidWorks and ANSYS Workbench. For the bending strength models, three types of screw structures (solid pedicle screws, cannulated pedicle screws, and cannulated pedicle screws with pin) and two types of screw threads (conical design and cylindrical design) were discussed. For the bone holding power models, conical pedicle screws and cylindrical pedicle screws with bone cement were analyzed. The best location of bone cement for different pedicle screw designs was also discussed. In the discussion of conical pedicle screws, whether there is the effect of bone compaction is discussed to do parameterized analysis and sensitivity analysis.
    For the results of the bending strength models, the bending strength of the conical cannulated pedicle screws was significantly superior to that of the cylindrical cannulated pedicle screws. In addition, the cylindrical cannulated pedicle screw with pin could greatly improve their bending strength as compared with the cylindrical cannulated pedicle screw alone. For the results of the bone holding power models, the best bone cement distribution was very close to the proximal site of pedicle screws and the model with bone compaction is better than the model without bone compaction. This result was compatible with the past study. Therefore, the numerical models created in this study can be used to predict the bending strength and the bone holding power of the cannulated pedicle screws with injection of bone cement. These models can also decrease the time and effort for improving commercial products or developing a new design.

    中文摘要 I ABSTRACT II 誌謝 III 目 錄 IV 圖表索引 VII 第一章 緒論 1 1.1 研究背景、動機與目的 1 1.2 脊椎解剖與構造 4 1.3 骨質疏鬆椎體之疾病 7 1.4 椎弓根螺絲簡介 9 1.5 文獻回顧 10 1.5.1 臨床研究 10 1.5.2 彎曲強度 10 1.5.3 拉出強度 11 1.6 本文架構 14 第二章 材料與方法 15 2.1 研究流程 15 2.2 材料簡介 17 2.2.1 中空型椎弓根螺絲 17 2.2.2 仿椎體材料試片 17 2.2.3 骨水泥 17 2.2.4 椎體與骨水泥分佈情況 18 2.3 有限元素法簡介 20 2.4 彎曲強度分析 24 2.5 彎曲強度之收斂性分析 32 2.6 彎曲強度之參數化分析 34 2.6.1 不同類型的中空型螺絲分析 34 2.6.2 中空型螺絲加入銷分析 35 2.7 骨咬合強度分析 36 2.8 骨咬合強度之收斂性分析 39 2.9 骨咬合之參數化分析 39 第三章 結果 42 3.1 彎曲強度分析結果 42 3.1.1 收斂性分析 42 3.1.2 不同類型的中空型螺絲分析結果 47 3.1.3 中空型螺絲加入銷之分析結果 51 3.2 骨咬合強度分析結果 56 3.2.1 收斂性分析 56 3.2.2 參數化分析 60 第四章 討論 63 第五章 結論與未來展望 68 5.1 結論 68 5.2 未來展望 69 參考文獻 70 附錄 75 作者簡介 81

    [1] Dougherty, G., "Quantitative CT in the measurement of bone quantity and bone quality for assessing osteoporosis," Medical Engineering & Physics, vol. 18, pp. 557-568, 1996.
    [2] Werner, H. J., H. Martin, D. Behrend, K. P. Schmitz, and H. C. Schober, "The loss of stiffness as osteoporosis progresses," Medical Engineering & Physics, vol. 18, pp. 601-606, 1996.
    [3] Thomas, P. A., "Racial and ethnic differences in osteoporosis," The Journal of The American Academy of Orthopaedic Surgeons, 15 Suppl 1, S26-30, 2007.
    [4] Becker, S., A. Chavanne, R. Spitaler, K. Kropik, N. Aigner, M. Ogon, and H. Redl, "Assessment of different screw augmentation techniques and screw designs in osteoporotic spines," European Spine Journal, vol. 17, pp. 1462-1469, 2008.
    [5] Gardner, M. j., M. h. Griffith, D. Demetrakopoulos, R. h. Brophy, A. Grose, D. l. Helfet, and D. G. Lorich, "Hybrid locked plating of osteoporotic fractures of the humerus," Journal of Bone and Joint Surgery - Series A, vol. 88, pp. 1962-1967, 2006.
    [6] 游祥明, 宋晏仁, 古宏海, 傅毓秀, and 林光華, 解剖學 二版: 華杏出版股份有限公司, (2005).
    [7] Heini, P. F., "The current treatment--a survey of osteoporotic fracture treatment. Osteoporotic spine fractures: the spine surgeon's perspective," Osteoporos International, vol. 16, pp. 85-92, 2005.
    [8] Hadjipavlou, A. G., C. L. Nicodemus, F. A. Al-Hamdan, J. W. Simmons, and M. H. Pope, "Correlation of bone equivalent mineral density to pull-out resistance of triangulated pedicle screw construct," Journal of Spinal Disorders, vol. 10, pp. 12-19, 1997.
    [9] Halvorson, T. L., L. A. Kelley, K. A. Thomas, T. S. Whitecloud Iii, and S. D. Cook, "Effects of bone mineral density on pedicle screw fixation," Spine, vol. 19, pp. 2415-2420, 19950308 DCOM- 19950308 1994.
    [10] Wittenberg, R. H., M. Shea, D. E. Swartz, K. S. Lee, A. A. White Iii, and W. C. Hayes, "Importance of bone mineral density in instrumented spine fusions," Spine, vol. 16, pp. 647-652, 19910905 DCOM- 19910905 1991.
    [11] Zhu, Q., W. W. Lu, A. D. Holmes, Y. Zheng, S. Zhong, and J. C. Y. Leong, "The effects of cyclic loading on pull-out strength of sacral screw fixation: An in vitro biomechanical study," Spine, vol. 25, pp. 1065-1069, 2000.
    [12] Cho, D. Y., W. Y. Lee, and P. C. Sheu, "Treatment of thoracolumbar burst fractures with polymethyl methacrylate vertebroplasty and short-segment pedicle screw fixation," Neurosurgery, vol. 53, pp. 1354-60; discussion 1360-1, Dec 2003.
    [13] Stambough, J. L., F. El Khatib, A. M. Genaidy, and R. L. Huston, "Strength and fatigue resistance of thoracolumbar spine implants: an experimental study of selected clinical devices," Journal of Spinal Disorders, vol. 12, pp. 410-4, Oct 1999.
    [14] Hashemi, A., D. Bednar, and S. Ziada, "Pullout strength of pedicle screws augmented with particulate calcium phosphate: an experimental study," The Spine Journal, vol. 9, pp. 404-10, May 2009.
    [15] Lotz, J. C., S. S. Hu, D. F. Chiu, M. Yu, O. Colliou, and R. D. Poser, "Carbonated apatite cement augmentation of pedicle screw fixation in the lumbar spine," Spine (Phila Pa 1976), vol. 22, pp. 2716-23, Dec 1 1997.
    [16] Pfeiffer, M., L. G. Gilbertson, V. K. Goel, P. Griss, J. C. Keller, T. C. Ryken, and H. E. Hoffman, "Effect of specimen fixation method on pullout tests of pedicle screws," Spine (Phila Pa 1976), vol. 21, pp. 1037-44, May 1 1996.
    [17] Yerby, S. A., J. R. Ehteshami, and R. F. McLain, "Loading of pedicle screws within the vertebra," Journal of Biomechanics, vol. 30, pp. 951-4, Sep 1997.
    [18] 張傑富, "腰椎椎弓足螺絲之多目標最佳化設計:有限元素分析與生物力學測試," 國立台灣科技大學機械工程系碩士論文, 2010.
    [19] Kim, H. S., S. K. Park, H. Joy, J. K. Ryu, S. W. Kim, and C. I. Ju, "Bone cement augmentation of short segment fixation for unstable burst fracture in severe osteoporosis," The Korean Neurosurgical Society, pp. 8-14, 2008.
    [20] Fogel, G. R., C. A. Reitman, W. Liu, and S. I. Esses, "Physical characteristics of polyaxial-headed pedicle screws and biomechanical comparison of load with their failure," Spine (Phila Pa 1976), vol. 28, pp. 470-3, Mar 1 2003.
    [21] Chen, P. Q., S. J. Lin, S. S. Wu, and H. So, "Mechanical performance of the new posterior spinal implant: effect of materials, connecting plate, and pedicle screw design," Spine (Phila Pa 1976), vol. 28, pp. 881-6; discussion 887, May 1 2003.
    [22] Chao, C. K., C. C. Hsu, J. L. Wang, and J. Lin, "Increasing bending strength and pullout strength in conical pedicle screws: biomechanical tests and finite element analyses," Journal of Spinal Disorders & Techniques, vol. 21, pp. 130-8, Apr 2008.
    [23] Klos, K., D. Wahnert, B. Gueorguiev, K. Schwieger, G. O. Hofmann, M. Windolf, and T. Muckley, "Development of a technique for cement augmentation of nailed tibiotalocalcaneal arthrodesis constructs," Clinical Biomechanics, vol. 25, pp. 576-581, 2010.

    [24] Abshire, B. B., R. F. McLain, A. Valdevit, and H. E. Kambic, "Characteristics of pullout failure in conical and cylindrical pedicle screws after full insertion and back-out," The Spine Journal, vol. 1, pp. 408-14, Nov-Dec 2001.
    [25] Chen, L. H., C. L. Tai, P. L. Lai, D. M. Lee, T. T. Tsai, T. S. Fu, C. C. Niu, and W. J. Chen, "Pullout strength for cannulated pedicle screws with bone cement augmentation in severely osteoporotic bone: influences of radial hole and pilot hole tapping," Clinical Biomechanics, vol. 24, pp. 613-618, 2009.
    [26] Wu, Z.-x., M.-x. Gao, H.-x. Sang, Z.-s. Ma, G. Cui, Y. Zhang, and W. Lei, "Surgical treatment of osteoporotic thoracolumbar compressive fractures with open vertebral cement augmentation of expandable pedicle screw fixation: A biomechanical study and a 2-Year follow-up of 20 patients," Journal of Surgical Research, 2010.
    [27] Andreas Boger, M. B., Paul Heini, Sophie Verrier,Erich Schneider, "Properties of an injectable low modulus PMMA bone cement for osteoporotic bone," Wiley InterScience, vol. Appl Biomater 86B, pp. 474–482, 2008.
    [28] Chang, M. C., C. L. Liu, and T. H. Chen, "Polymethylmethacrylate augmentation of pedicle screw for osteoporotic spinal surgery: A novel technique," Spine, vol. 33, 2008.
    [29] 陳星嶧, "針對椎弓足螺絲暨骨水泥擴張術之拉出強度及靈敏度探討:有限元素分析," 國立台灣科技大學機械工程系碩士學位論文, 2010.
    [30] 康淵•陳信吉, "ANSYS 入門 (修訂四版)," 全華圖書股份有限公司, 2007.
    [31] Chao, C.-K., J. Lin, S. T. Putra, and C.-C. Hsu, "A neurogenetic approach to a multiobjective design optimization of spinal pedicle screws," Journal of Biomechanical Engineering, vol. 132, p. 091006, 2010.
    [32] Gaines, R. W., "The use of pedicle-screw internal fixation for the operative treatment of spinal disorders," Journal of Bone and Joint Surgery, Vol.82,pp.1458-1476, 2000.
    [33] 徐慶琪, "骨螺絲之結構設計與生物力學分析," 國立台灣科技大學機械工程研究所博士論文, 2005.
    [34] Kwok Aw Fau - Finkelstein, J. A., T. Finkelstein Ja Fau - Woodside, T. C. Woodside T Fau - Hearn, R. W. Hearn Tc Fau - Hu, and R. W. Hu, "Insertional torque and pull-out strengths of conical and cylindrical pedicle screws in cadaveric bone," Spine, 1997.

    QR CODE