簡易檢索 / 詳目顯示

研究生: 段葳葳
Wei-wei Duan
論文名稱: YSZ奈米薄膜於不同基板下之巨離子導電效應研究
Colossal ionic-conduction characteristic of nano-scale YSZ film on different substrates
指導教授: 周振嘉
Chen-chia Chou
口試委員: 周賢鎧
Shyan-kay Jou
葉宗和
Tsung-her Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 137
中文關鍵詞: 釔摻雜氧化鋯薄膜固態氧化物燃料電池離子導
外文關鍵詞: Yttria-stabilized zirconia(YSZ), thin film, Solid Oxide Fuel Cell( SOFC), ionic conductivity
相關次數: 點閱:389下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以磁控濺鍍技術,製作出30-100nm的YSZ薄膜於矽基板、MgO、LaAlO3、LiNbO3和不鏽鋼上。薄膜的型態則以SEM、AFM觀察,結構為柱狀晶且其表面緻密且無孔洞,從XRD、Raman和XPS分析中確定為立方晶向之8YSZ薄膜。XPS的鍵結分析中發現YSZ/Si的介面,存在缺氧的SiOx(x<2)。使用交流阻抗分析儀量測YSZ/Si介面處離子導電行為,其中B、C type YSZ/Si比較中,量測溫度達200℃時B type的YSZ(Y)方向的離子導產生作用,於500℃的導電率則有102.3(S/cm)表現;YSZ/MgO量測不到任何阻抗,應為介面呈壓應力型態所致;YSZ/LAO和YSZ/LNO分別則於400和500℃展現半圓圖譜,介面的效應導致導電率呈現σ30nm>σ70nm>σ100nm,整體導電率表現與張應力大小成正比,即σYSZ/Si>σYSZ/LAO>σYSZ/LNO。在YSZ(Y)方向所產生的巨離子導電效應中,矽基板約200℃就產生了效應,而絕緣基板則在400-500℃才發生,證明了基板與整體導電率的關係,基板生成的電場可能影響傳輸電子的能力與離子的導通。然而導體基板由於導電率極好,造成短路而無法量測到YSZ訊號。因此本研究認為提升整體元件之導電率表現,基板的選擇有助於提升空間電荷區域,而顯露更佳離子導電的介面效應。


    In this study, the YSZ (Yttria-stabilized zirconia) thin film was deposited on different substrates. The material of substrates includes Silicon, MgO, LaAlO3(LAO), LiNbO3(LNO) and stainless steel. The thickness of the YSZ film was measured by Ellipseometer and SEM, and its surface morphology was observed by using SEM and AFM. The thin film is columnar. The information gathered by using XRD, Raman Spectroscopy, and XPS shows that the thin film is cubic 8 YSZ.
    According to the XPS bonding analysis, there are SiOx (x<2) exist at the YSZ/Si interface. Therefore, the ionic conductivity of the YSZ/Si interface increases. Comparing the electrical characteristics of type B and type C interfaces in this study, it was found that the ironic conduction of type B can be activated when the temperature increased to 200oC. When the temperature was 500oC, it has a best performance, 102.3(S/cm). On the other hand, no resistance can be observed from the YSZ/MgO specimens. As to the YSZ/LAO and YSZ/LNO specimens, the semi-circle impedance spectra can be measured at 400oC and 500oC relatively.
    For all substrates, the space charge region affects the conductivity of the thin film (σ30nm > σ70nm > σ100nm). The larger dilatiative strain a substrate has, the better overall conductivity it performed (σYSZ/Si > σYSZ/LAO > σYSZ/LNO). The colossal ionic conduction occurred on the Si substrate at 200oC, and for those insulator substrates, LAO and LNO, the same effect occur till 400~500oC. This shows that the material of substrate indeed affects the overall conductivity of the device. To enhance the overall conductivity of a device, the material of substrate is relatively more important than the dilatiative strain and the space charge region of the interface. However, substrates with good conductivity are not always the best choice. The conductivity of conductor substrates (stainless steel) is high, so the electrical flow passing the YSZ film is too weak to be measured.

    中文摘要 II Abstract III 誌謝 V 目錄 VII 圖目錄 X 表目錄 XVI 第一章 緒論 1 1.1前言 1 第二章 基礎理論與文獻回顧 2 2.1固態氧化物燃料電池 2 2.1.1電解質基本傳導原理 4 2.2氧化鋯基材料 6 2.2.1釔摻雜氧化鋯之物理特性 6 2.2.2釔摻雜氧化鋯之導電特性 8 2.3 氧化物異質結構介面間之離子導電現象 18 2.3.1空間電荷區域對離子導的影響 18 2.3.2異質結構之匹配度對離子導的影響 23 2.4非純矽基板溫度與導電率關係 26 2.5交流阻抗分析儀原理 28 第三章 實驗設計 35 3.1研究動機與目的 35 3.2電流流經疊構路徑之阻抗計算方法 39 3.2 區分離子與電子導電率方法 41 第四章 實驗方法 44 4.1實驗藥品規格及儀器設備 44 4.2實驗流程 47 4.3磁控式濺鍍系統與製程參數 50 4.4分析儀器之參數設定與介紹 52 4.4.1橢圓儀薄膜參數與設定 52 4.4.2場發射型掃描式電子顯微鏡與能量散佈分析儀 53 4.4.3原子力顯微鏡 54 4.4.4 X光繞射分析儀 55 4.4.5拉曼光譜分析 56 4.4.6 X射線光電子能譜儀 57 4.4.7電性量測與分析方法 58 第五章 結果與討論 63 5.1 Pt電極/YSZ之表面型態與電性討論 63 5.1.1交流阻抗之電性表現 63 5.1.2掃描式電子顯微鏡之表面型態分析 67 5.2 YSZ/Si薄膜表面形貌與成分分析 70 5.2.1薄膜表面型態分析 70 5.2.2薄膜成分分析 74 5.2.3 XPS分析YSZ/Si介面鍵結與成長機制 78 5.3 YSZ奈米薄膜於矽基板下之巨離子導電效應 84 5.3.1矽基板(A type)之電性分析 84 5.3.2 YSZ薄膜/Si於不同疊構下之電性比較 89 5.4 YSZ薄膜沉積於絕緣體和導體基板討論 96 5.3.1 YSZ/絕緣基板之XRD量測結果 96 5.3.2 YSZ薄膜沉積於絕緣體和導體基板之電性探討 97 5.5 YSZ薄膜沉積於不同基板之導電率分析 104 第六章 結論 106 第七章 參考文獻 110 附錄一 118

    1. N. Q. Minh, Solid oxide fuel cell technology—features and applications. Solid State Ionics, 174, 1-4, p.271-277, (2004).
    2. S. C. Singhal, M. Dokiya, et al., Solid Oxide Fuel Cells VIII (SOFC VIII), The Electrochemical. Society, Inc., 88, p.2003-07, (2003).
    3. N. Q. Minh, Ceramic Fuel Cells. Journal of the American Ceramic Society, 76, p.563, (1993).
    4. N. Q. Minh, T. Takahashi, Science and Technology of Ceramic Fuel Cells., Elsevier, Amsterdam, The Netherlands, (1995).
    5. S. C. Singhal, K. Kendall, et. al, High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications. Elsevier, Oxford, UK, (2003).
    6. G. Lewis, N. Brandon, S. O’Dea, B. Steele, 2003 Fuel Cell Seminar Abstracts, Courtesy Associates, p.431, (2003).
    7. 韓敏芬、彭蘇萍,固態氧化物燃料電池材料及製備,科學出版,(2004)。
    8. R. L. Ciuccio, N. E. Luiz, A. J. Filho, et al., Comparative analysis properties of ceramics advanced applications in implantology, Innovations Implant Journal, 5, p.15-21, (2010).
    9. K. Eguchi, Ceramic materials containing rare earth oxides for solid oxide fuel cell, Journal of Alloys and Compounds, 250, p.486-491, (1997).
    10. Y. Suzuki and T. Takahashi, Denki Kagaku, 39, p.406, (1971).
    11. M. A. C. G. Van De Graaf and A. J. Burggraaf, in Science and Technology of Zirconia II, N. Claussen, M. Ruhle, and A. H. Heuer (eds.), American Ceramic Society, Columbus, OH, 744, (1984).
    12. J. E. Bauerle, Study of solid electrolyte polarization by a complex admittance method, J. Phys. Chem. Solids, 30, p.2657-2670, (1969).
    13. E. J. L. Schouler, Ph. D. Thesis, Institut National Polytechnique de Grenoble, Grenoble, France, (1979).
    14. T. Takahashi, H. Iwahara, Y. Suzuki and D. Kagaku, J. Phys. Chem. Solids, 39, p.665, (1971).
    15. B. C. H. Steele, in High Conductivity Solid Ionic Conductor, Recent Trends and Applications, T. Takahashi (ed.), World Scientific, Singapore, 402, (1989).
    16. J. F. Baumard and P. Abelard, in Science and Technology of Zirconia II, N. Claussen, M. Ruhle, and A. H. Heuer (eds.), American Ceramic Society, Columbus, OH, 555, (1984).
    17. Y. Suzuki and T. Takahashi, J. Chem. Soc. Jpn, 1610, (1997).
    18. N. H. Anderson, K. Claussen, M. A. Hackett, et.al, in Transport-Structure Relations in Fast Ion and Mixed Conductor, Riso National Laboratory, Roskilde, Denmark, p.279, (1985).
    19. A. Nakamura and J. B. Wagner, Jr., Defect Structure, Ionic Conductivity, and Diffusion in Yttria Stabilized Zirconia and Related Oxide Electrolytes with Fluorite Structure, J. Electrochem. Soc., 133, p.1542-1548, (1986).
    20. Y. Suzuki and K. Sugiyama, J. Ceram. Soc., Jpn. Intl. Ed., 95 , 480, (1987).
    21. E. C. Subbarao, in Science and Technology of Zirconia II, N. Claussen, M. Ruhle, and A. H. Heuer (eds.), American Ceramic Society, Columbus, OH, p.1, (1981).
    22. J. H. Park and R. N. Blumenthal, Electronic Transport in 8 Mole Percent Y2O3-ZrO2, J. Electrochem. Soc., 136, p.2867, (1989).
    23. H. L. Tuller , S. J. Litzelman, W. Jung, Micro-ionics: next generation power sources, Phys. Chem. Chem. Phys., 11, p.3023-3034, (2009).
    24. J. A. KilnerIonic, conductors: Feel the strain, Nature Materials, 7, p.838-839, (2008).
    25. R. Gerhardt, A. S. Nowick, Grain-Boundary Effect in Ceria Doped with Trivalent Cations: I, Electrical Measurements, Journal of the American Ceramic Society, 69, 9, p.641-646, (1986).
    26. S. P. S. Badwal, S. Rajendran, Effect of micro- and nano-structures on the properties of ionic conductors, Solid State Ionics, 70-71, Part 1, p.83-95, (1994).
    27. M. Aoki, Y. M. Chiang, I. Kosacki, et al., Solute Segregation and Grain-Boundary Impedance in High-Purity Stabilized Zirconia, Journal of the American Ceramic Society, 79, 5, p.1169-1180, (1996).
    28. N. Sata, K. Eberman, K. Eberl and J. Maier, Mesoscopic fast ion conduction in nanometre-scale planar heterostructures, Nature, 408, p.946-949, (2000).
    29. J. Maier, Defect chemistry and ion transport in nanostructured materials: Part II. Aspects of nanoionics, Solid State Ionics, 157, 1-4, p.327-334, (2003).
    30. J. Maier, Ionic conduction in space charge regions, Prog. Solid St. Chem., 23, p.171-263, (1995).
    31. J. Maier, Nano-sized mixed conductors (Aspects of nano-ionics. Part III), Solid State Ionics, 148, p.367-374, (2002).
    32. J. Maier, Defect chemistry and ionic conductivity in thin films, Solid State Ionics, 23, 1-2, p.59-67, (1987).
    33. A. Karthikeyan, C. L. Chang, and S. Ramanathana, High temperature conductivity studies on nanoscale yttria-doped zirconia thin films and size effects, Applied Physics Letters, 89, p.183116, (2006).
    34. I. Kosackia, C. M. Rouleaub, P. F. Bechera, et al., Nanoscale effects on the ionic conductivity in highly textured YSZ thin films, Solid State Ionics, 176, p. 1319–1326, (2005).
    35. J. G. Barriocanal, A. R. Calzada, M. Varela, et al., Colossal Ionic Conductivity at Interfaces of Epitaxial ZrO2:Y2O3/SrTiO3 Heterostructures, Science, 321, p.676, (2008).
    36. H. L. Tuller, Ionic conduction in nanocrystalline materials, Solid State Ionics, 131, 1-2, p.143-157, (2000).
    37. C. Korte , A. Peters , J. Janek , D. Hesse and N. Zakharov, Ionic conductivity and activation energy for oxygen ion transport in superlattices-the semicoherent multilayer system YSZ (ZrO2 + 9.5 mol% Y2O3)/Y2O3, Phys. Chem. Chem. Phys., 10, p.4623-4635, (2008).
    38. N. Schichtel, C. Korte, D. Hesse and J. Janek, Elastic strain at interfaces and its influence on ionic conductivity in nanoscaled solid electrolyte thin films—theoretical considerations and experimental studies , Phys. Chem. Chem. Phys., 11, p.3043-3048, (2009).
    39. 劉傳璽、陳進來,半導體元件物理與製程-理論與實務,台灣,五南出版社,(2008)。
    40. J. R. Macdonald, Impedance Spectroscopy: Emphasizing Solid Materials and System, John Wiley & Sons, Inc., (1987).
    41. 黃鼎漢,以低溫水熱法合成奈米級釤及鉍摻雜鈰系固態氧化物燃料電池電解質與其電化學性質之研究,台灣科技大學材料科技研究所碩士論文,(2004)。
    42. 謝孟儒,摻雜之鑭鉬氧化物作為固態氧化物燃料電池電解質的製備與材料性質,台灣科技大學材料科技研究所碩士論文,(2004).
    43. N. Q. Minh, C. R. Horne, F. W. Poulsen, et al., High Temperature Electrochemical Behaviour of Fast Ion and Mixed Conductors. Riso National Laboratory, Roskilde, Denmark, p.337, (1993).
    44. T. Ishihara, M. Honda, H. Nishiguchi, et. al, SOFC, The Electrochemical Society, Pennington, NJ, p.301, (1997).
    45. Y. J. Leng, S. H. Chan, S. P. Jiang and K. A. Khor, Low-temperature SOFC with thin film GDC electrolyte prepared in situ by solid-state reaction. Solid State Ionics, 170, (1-2), p.9-15, (2004).
    46. J. L. Hertz, H. L. Tuller, Measurement and finite element modeling of triple phase boundary-related current constriction in YSZ. Solid State Ionics, 178, p.1001–1009, (2007).
    47. S. M. Kim, J. W. Son, K. R. Lee, et al., Substrate effect on the electrical properties of sputtered YSZ thin films for co-planar SOFC applications. Journal of Electroceramics, 24, p.153-160, (2010).
    48. M. Bass, C. DeCusatis, J. Enoch, et al., Handbook of Optics, Third Edition Volume I: Geometrical and Physical Optics, Polarized Light, Components and Instruments., (2009).
    49. E. Mutoro, B. Luersen, S. Gunther and J. Janek, The electrode model system Pt(O2)|YSZ: Influence of impurities and electrode morphology on cyclic voltammograms, Solid State Ionics, 180, p.1019-1033, (2009).
    50. N. Baumann, E. Mutoro , J. Janek, Porous model type electrodes by induced dewetting of thin Pt films on YSZ substrates, Solid State Ionics, 181, p.7-15, (2010).
    51. E. Mutoro, C. Koutsodontis, B. Luerssen, et al., Electrochemical promotion of Pt(111)/YSZ(111) and Pt-FeOx/YSZ(111) thin catalyst films: Electrocatalytic, catalytic and morphological studies, Applied Catalysis B: Environmental, 100, p.328-337, (2010).
    52. H. Popke, E. Mutoro, B. Luersen and J. Janek, The potential of in situ-scanning electron microscopy-Morphology changes of electrically polarized thin film Pt(O2)/YSZ model electrodes, Solid State Ionics, 189, p.56-62, (2011).
    53. A. Toghan, M. Khodari, F. Steinbach and R. Imbihl, Microstructure of thin film platinum electrodes on yttrium stabilized zirconia prepared by sputter deposition, Thin Solid Films, 519, p.8139-8143, (2011).
    54. J. A. Thornton, Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings, Journal of Vacuum Science and Technology, 11, p.666-698 (1974).
    55. H. Hidalgo, E. Reguzin, E. Millon, et al., Yttria-stabilized zirconia thin films deposited by pulsed-laser deposition and magnetron sputtering, Surface & Coatings Technology, 205, p.4495-4499, (2011).
    56. S. Heiroth, T. Lippert, A. Wokaun, et al., Yttria-stabilized zirconia thin films by pulsed laser deposition: Microstructural and compositional control, Journal of the European Ceramic Society, 30, p.489-495, (2010).
    57. J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corp., Eden Prairie, MN, (1992).
    58. I. Espitia-Cabrera, H. D. Orozco-Hernandez, P. Bartolo-Perez, M. E. Contreras-Garcia, Nanostructure characterization in single and multi layer yttria stabilized zirconia films using XPS, SEM, EDS and AFM, Surface & Coatings Technology, 203, p.211-216, (2008).
    59. E. B. Ramı’rez, A. Huanosta, J. P. Sebastian, et al., Structure, composition and electrical properties of YSZ films deposited by ultrasonic spray pyrolysis, J. Mater Sci, 42, p.901-907, (2007).
    60. S. J. Wang and C. K. Ong, Epitaxial Y-stabilized ZrO2 films on silicon: Dynamic growth process and interface structure, Appl. Phys. Lett., 80, p.2541, (2002).
    61. J. J. Chambers and G. N. Parsons, Yttrium silicate formation on silicon: Effect of silicon preoxidation and nitridation on interface reaction kinetics, Appl. Phys. Lett., 77, p.2385, (2000).
    62. G. Lucovsky, G. B. Rayner, D. Kang, et al., Electronic structure of noncrystalline transition metal silicate and aluminate alloys, Appl. Phys. Lett., 79, p.1775, (2001).
    63. M. J. Guittet, J. P. Crocombette, and M. Gautier-Soyer, Bonding and XPS chemical shifts in ZrSiO4 versus SiO2 and ZrO2: Charge transfer and electrostatic effects, Phys. Rev. B, 63, p.125117, (2001).
    64. J. P. Maria, D. Wicaksana, A. I. Kingon, et al., High temperature stability in lanthanum and zirconia-based gate dielectrics, J. Appl. Phys., 90, p.3476, (2001).
    65. T. S. Jeon, J. M. White, and D. L. Kwong, Thermal stability of ultrathin ZrO2 films prepared by chemical vapor deposition on Si(100), Appl. Phys. Lett., 78, p.368, (2001).
    66. V. Edon, M. C. Hugona, B. Agiusa, et al., nvestigation of lanthanum and hafnium-based dielectric films by X-ray reflectivity, spectroscopic ellipsometry and X-ray photoelectron spectroscopy, Thin Solid Films, 516, 22, p.7974-7978, (2008).
    67. S. Yong, D. Eom, C. S. Hwang, and H. J. Kim, Properties of lanthanum oxide thin films deposited by cyclic chemical vapor deposition using tris(isopropyl-cyclopentadienyl)lanthanum precursor, J. Appl. Phys., 100, p.024111, (2006).
    68. 魏拯華,李敏鴻,劉致為, 奈米電子學, 國立臺灣大學出版中心, (2006).
    69. Reisman, M. Berkenblit, S. A. Chan, et al., The Controlled Etching of Silicon in Catalyzed Ethylenediamine-Pyrocatechol-Water Solutions, J. Electrochem. Soc., 126, 8, p.1406, (1979).
    70. G.V. Samsonov (ed.), The Oxide Handbook, IFI/Plenum, New York, p.202, (1982).
    71. H. Sumia, T. Yamaguchia, K. Hamamotoa, et al., AC impedance characteristics for anode-supported microtubular solid oxide fuel cells, Electrochimica Acta, 67, p.159-165, (2012).
    72. Z. Stoynov, D. Vladikova, Differential Impedance Analysis, Prof. Marin Drinov Academic Publishing House, Sofia, (2006).
    73. D. Vladikova, Z. Stoynov, G. Raikova in: Z. Stoynov, D. Vladikova (Eds.), Inductance Errors Correction in Impedance Sstudies of Energy Sources, Portable and Emergency Energy Sources from Materials to Systems, Prof. Marin Drinov Academic Publishing House, Sofia, p.383., (2006).

    QR CODE