簡易檢索 / 詳目顯示

研究生: 廖國崴
Kuo-Wei Liao
論文名稱: 單原子位點觸媒應用於陰離子交換膜水電解與燃料電池
Catalysts with Single-atomic Sites for Anion Exchange Membrane Water Electrolysis and Fuel Cell
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 王丞浩
Chen-Hao Wang
王冠文
Kuan-Wen Wang
陳燦耀
Tsan-Yao Chen
葉禮賢
Li-Hsien Yeh
江泰槿
Tai-Chin Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 102
中文關鍵詞: 陰離子交換膜水電解裝置陰離子交換膜燃料電池單原子位點析氧反應氧還原反應
外文關鍵詞: AEMWE, AEMFC, Single atomic sites, OER, ORR
相關次數: 點閱:394下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於能源與環境議題日益嚴重,人們開始尋找替代能源。氫能源因為較容易自電解水取得,且反應產物只有水,獲得大家的關注。
本文的第一部分介紹了一種兩步法製備具有原子級分散釕的氮參雜碳片觸媒(Ru-N-C-NH3)。該觸媒在鹼性析氧反應(OER)中,擁有優異的電化學活性。具體表現在電位為1.52 V時16842 A gRu 1的質量活性以及電流密度為10 mA cm-2時290 mV的過電位。在陰離子交換膜水電解裝置中,我們將Ru-N-C-NH3作為陽極的觸媒,並穩定運行了超過100小時,而且質量活性比用商業化氧化銥(IrO2)作為陽極的電解水裝置高了3個數量級。我們也證明了如此優異的性能是與Ru的原子級分散與Ru-N鍵節相關。但是X光吸收能譜中還是有Ru-Ru鍵節的訊號,說明了Ru不是完全分散到原子的維度,仍然有奈米顆粒或團簇的存在。
根據第一個部分的結果,為了達到完全的單原子觸媒,我們修改了一些製備過程中的參數,例如更換前驅物,加熱條件以及反應步驟,我們還使用了一種新的快速退火的方法。第二部分的實驗成功合成的完全分散的單原子觸媒,並比較了幾個不同的參數如碳氮比、加熱溫度和鈷含量。2%-CN6-1050F-30-N15表示該觸媒擁有2%的理論Co含量和6的理論碳氮比。該觸媒的前驅物在1050oC的N2氣氛中快速退火碳化了30分鐘,然後得到的黑色觸媒再在1050oC的5% NH3氣氛中退火了15分鐘。它的半波電位為 0.804 V (vs. RHE) , 極限電流為6.3 mA cm-2, 具有優異的電化學性能。以2%-CN6-1050F-30-N15觸媒作為陰極的陰離子交換膜燃料電池,擁有673.3 mW cm-2的最大功率密度,超過商業40% Pt/C,但是相同條件下,我們的觸媒中金屬載量只有二十分之一。之所以2%-CN6-1050F-30-N15有這麼高的活性,是由於其較高的缺陷結構與比表面積(783.6 m2g-1),經TEM與XAS驗證通過Co-N鍵節達成的單原子位點,二次退火後較高的氮含量以及其中較高的吡啶氮含量。所以2%-CN6-1050F-30-N15是一個適合於應用在陰離子交換膜燃料電池的觸媒。


Energy issues and environmental crises have become more serious recently. Therefore, people start thinking about substituting energy. Hydrogen energy comes to people’s minds due to its advantages of clean and accessibility. The works of an Anion Exchange Membrane Water Electrolyzer (AEMWE) and Fuel Cell (AEMFC) are done to find suitable catalysts for the electrode.
The first work states a strategy using both “top-down” and “bottom-up” methods to synthesize catalysts with atomic dispersion Ru through two-step thermal treatment on nitrogen-doped carbon sheets (Ru-N-C-NH3), which performs outstanding catalyst for the oxygen evolution reaction (OER). The Ru-N-C-NH3 catalyst performs an excellent OER activity in alkaline media, delivering a mass activity as high as 16842 A gRu-1 at 1.52V with a low overpotential of 290 mV at a current density of 10 mA cm-2. The catalyst activity stays stable without obvious decay after 100 hours of durability test in the anion exchange membrane water electrolysis (AEMWE). The mass activity of AEMWE is also three-order higher than the composition using commercial IrO2 as an anode. The atomic dispersion of the catalyst and the Ru-N bonding is also confirmed to be related to the enhancement of OER activity. However, there are still XAS signals of Ru-Ru bonding, indicating the incomplete atomic dispersion of Ru.
The results lead us to some modifications of the synthesis procedure such as a change of precursor, heating condition, and reaction steps to finalize complete atomic dispersion. Fast annealing procedure is also introduced. The second work successfully fabricates a complete single atomic catalyst, several parameters are also compared like carbon-nitrogen ratio, heating temperature, and cobalt content. 2%-CN6-1050F-30-N15, representing a catalyst with 2% theoretical cobalt loading and a carbon-nitrogen ratio of 6 is carbonized with fast annealing procedure at 1050oC in N2 atmosphere for 30 minutes and then annealed at 1050oC in 5% NH3 for 15 minutes, has the best electrochemical activity. The catalyst has a halfwave potential of 0.804 V vs. RHE and a limiting current of 6.3 mA cm-2. The AEMFC full cell result of the best catalyst surpasses commercial 40 % Pt/C with the same catalyst loading but much lower metal content and reaches outstandingly 673.3 mW cm-2. 2%-CN6-1050F-30-N15 is proved to be a practical catalyst due to its high surface area of 783.6 m2g-1, complete single atomic sites confirmed by TEM and XAS, high content of nitrogen after second annealing, especially pyridinic N, and its high defect structure.

LIST OF CONTENTS ABSTRACT I 中文摘要 III ACKNOWLEDGEMENT V LIST OF CONTENTS VII LIST OF FIGURES X LIST OF TABLES XVI CHAPTER Ⅰ INTRODUCTION 1 1.1 Research background 1 1.2 Water electrolysis 6 1.2.1 Mechanism 6 1.2.2 Composition 8 1.3 Fuel Cell 10 1.3.1 Mechanism 11 1.3.2 Composition 14 1.4 Fundamental of electrochemistry 16 1.5 Single atomic catalysts 19 CHAPTER Ⅱ LITERATURE REVIEW 21 2.1 Platinum Group Metal Catalysts for OER 21 2.1.1 Ruthenium-based catalysts 22 2.1.2 Single-atomic Catalysts for OER 23 2.2 Non-Platinum Group Metal Catalysts for ORR 29 2.2.1 Single-atomic Cobalt-based catalysts 30 2.3 Molten Salt Method 33 CHAPTER Ⅲ EXPERIMENTAL DETAIL 34 3.1 List of Chemicals and instruments 34 3.2 Principle of characterization instruments and the sample preparations 35 3.2.1 X-ray Diffraction Spectrometer (XRD) 36 3.2.2 X-ray Photoelectron Spectrometer (XPS) 37 3.2.3 Scanning Electron Microscope (SEM) 38 3.2.4 Transmission Electron Microscope (TEM) 39 3.2.5 X-ray Absorption Spectrometer (XAS) 40 3.3 Experimental motivation and design of work Ⅰ 43 3.3.1 Motivation and Flow Chart 43 3.3.2 Synthesis of Ru-N-C Catalysts 44 3.3.3 Synthesis of Ru-N-C-NH3 Catalysts 44 3.3.4 Preparation of Ink for the Half-Cell test 44 3.3.5 Preparation for the AEMWE 45 3.4 Experimental motivation and design of work Ⅱ 47 3.4.1 Motivation and Flow Chart 47 3.4.2 Synthesis of CoSA-N-C Catalysts 49 3.4.3 Synthesis of extra N-doped CoSA-N-C-N15 Catalysts 49 3.4.4 Preparation of Ink for the Half-Cell test 50 3.4.5 Preparation for the AEMFC 51 CHAPTER Ⅳ RESULT AND DISCUSSION 53 4.1 Atomic Dispersed Ru Catalysts for AEMWE 53 4.1.1 XRD patterns and TEM images of samples with different Ru content 53 4.1.2 Half-cell and single-cell performance of Ru-N-C Catalysts 56 4.1.3 Characterization of 0.34-Ru-N-C-NH3 61 4.2 Carbon and Nitrogen ratio-controlled Co Single Atom Catalyst for AEMFC 68 4.2.1 Samples with different carbon and nitrogen Ratio 68 4.2.2 Samples with different Co content and heat treatment condition 78 4.2.3 Characterization of 2%-CN6-1050F-30 and 2%-CN6-1050F-30-N15 84 4.2.4 Single-cell performance of 2%-CN6-1050F-30-N15 Catalysts 88 CHAPTER Ⅴ CONCLUSION 91 5.1 Reflection from the Ru-N-C samples for AEMWE 91 5.2 Co Single Atom Catalyst for AEMFC 92 REFERENCE 93

[1] Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Applied energy, 88 (2011) 981-1007.
[2] O. Gröger, H.A. Gasteiger, J.-P. Suchsland, Electromobility: Batteries or fuel cells?, Journal of The Electrochemical Society, 162 (2015) A2605.
[3] Y. Nonobe, Development of the fuel cell vehicle mirai, IEEJ Transactions on Electrical and Electronic Engineering, 12 (2017) 5-9.
[4] T. Suzuki, Fuel cell stack technology of Toyota, ECS Transactions, 75 (2016) 423.
[5] H.R. Ellamla, I. Staffell, P. Bujlo, B.G. Pollet, S. Pasupathi, Current status of fuel cell based combined heat and power systems for residential sector, Journal of Power Sources, 293 (2015) 312-328.
[6] X. Chen, T. Li, J. Shen, Z. Hu, From structures, packaging to application: a system-level review for micro direct methanol fuel cell, Renewable and Sustainable Energy Reviews, 80 (2017) 669-678.
[7] A. Gong, D. Verstraete, Fuel cell propulsion in small fixed-wing unmanned aerial vehicles: Current status and research needs, International journal of hydrogen energy, 42 (2017) 21311-21333.
[8] T. Ioroi, Z. Siroma, S.i. Yamazaki, K. Yasuda, Electrocatalysts for PEM Fuel Cells, Advanced Energy Materials, 9 (2018) 1801284.
[9] F. Zhao, Z. Mu, H. Hao, Z. Liu, X. He, S. Victor Przesmitzki, A. Ahmad Amer, Hydrogen Fuel Cell Vehicle Development in China: An Industry Chain Perspective, Energy Technology, 8 (2020).
[10] L. Yang, B. Yu, G. Malima, B. Yang, H. Chen, Y.M. Wei, Are electric vehicles cost competitive? A case study for China based on a lifecycle assessment, Environ Sci Pollut Res Int, 29 (2022) 7793-7810.
[11] Z. Zhan, Current Status and Future Development of Fuel Cell Ships in China, Journal of Physics: Conference Series, 2160 (2022).
[12] 蔡宜君, 全球燃料電池車發展現況及臺灣機會, 機械工業雜誌, (2022) 116-120.
[13] Z.Y. Dong, J. Yang, L. Yu, R. Daiyan, R. Amal, A green hydrogen credit framework for international green hydrogen trading towards a carbon neutral future, International Journal of Hydrogen Energy, 47 (2022) 728-734.
[14] M. Rizwan, V. Alstad, J. Jäschke, Design considerations for industrial water electrolyzer plants, International Journal of Hydrogen Energy, 46 (2021) 37120-37136.
[15] F.-Y. Gao, P.-C. Yu, M.-R. Gao, Seawater electrolysis technologies for green hydrogen production: challenges and opportunities, Current Opinion in Chemical Engineering, 36 (2022).
[16] S. Sebbahi, N. Nabil, A. Alaoui-Belghiti, S. Laasri, S. Rachidi, A. Hajjaji, Assessment of the three most developed water electrolysis technologies: Alkaline Water Electrolysis, Proton Exchange Membrane and Solid-Oxide Electrolysis, Materials Today: Proceedings, (2022).
[17] A. Khataee, A. Shirole, P. Jannasch, A. Krüger, A. Cornell, Anion exchange membrane water electrolysis using Aemion™ membranes and nickel electrodes, Journal of Materials Chemistry A, 10 (2022) 16061-16070.
[18] Q. Xu, L. Zhang, J. Zhang, J. Wang, Y. Hu, H. Jiang, C. Li, Anion Exchange Membrane Water Electrolyzer: Electrode Design, Lab-Scaled Testing System and Performance Evaluation, EnergyChem, 4 (2022).
[19] R.R. Raja Sulaiman, W.Y. Wong, K.S. Loh, Recent developments on transition metal–based electrocatalysts for application in anion exchange membrane water electrolysis, International Journal of Energy Research, 46 (2021) 2241-2276.
[20] Q. Feng, X.Z. Yuan, G. Liu, B. Wei, Z. Zhang, H. Li, H. Wang, A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies, Journal of Power Sources, 366 (2017) 33-55.
[21] S. Marini, P. Salvi, P. Nelli, R. Pesenti, M. Villa, M. Berrettoni, G. Zangari, Y. Kiros, Advanced alkaline water electrolysis, Electrochimica Acta, 82 (2012) 384-391.
[22] N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu, H.M. Chen, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives, Chem Soc Rev, 46 (2017) 337-365.
[23] P.K. Sarangi, S. Nanda, P. Mohanty, Recent advancements in biofuels and bioenergy utilization, Springer2018.
[24] B.C. Steele, A. Heinzel, Materials for fuel-cell technologies, Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, World Scientific2011, pp. 224-231.
[25] R. Vinodh, R. Atchudan, H.-J. Kim, M. Yi, Recent Advancements in Polysulfone Based Membranes for Fuel Cell (PEMFCs, DMFCs and AMFCs) Applications: A Critical Review, Polymers, 14 (2022) 300.
[26] 衣寶廉, 燃料電池: 原理與應用 五南圖書出版股份有限公司2005.
[27] N. Ramaswamy, S. Mukerjee, Fundamental Mechanistic Understanding of Electrocatalysis of Oxygen Reduction on Pt and Non-Pt Surfaces: Acid versus Alkaline Media, Advances in Physical Chemistry, 2012 (2012) 491604.
[28] Z.F. Pan, L. An, T.S. Zhao, Z.K. Tang, Advances and challenges in alkaline anion exchange membrane fuel cells, Progress in Energy and Combustion Science, 66 (2018) 141-175.
[29] M. Tarasevich, O. Korchagin, Electrocatalysis and pH (a review), Russian Journal of Electrochemistry, 49 (2013) 600-618.
[30] Y. Yang, C.R. Peltier, R. Zeng, R. Schimmenti, Q. Li, X. Huang, Z. Yan, G. Potsi, R. Selhorst, X. Lu, W. Xu, M. Tader, A.V. Soudackov, H. Zhang, M. Krumov, E. Murray, P. Xu, J. Hitt, L. Xu, H.-Y. Ko, B.G. Ernst, C. Bundschu, A. Luo, D. Markovich, M. Hu, C. He, H. Wang, J. Fang, R.A. DiStasio, Jr., L.F. Kourkoutis, A. Singer, K.J.T. Noonan, L. Xiao, L. Zhuang, B.S. Pivovar, P. Zelenay, E. Herrero, J.M. Feliu, J. Suntivich, E.P. Giannelis, S. Hammes-Schiffer, T. Arias, M. Mavrikakis, T.E. Mallouk, J.D. Brock, D.A. Muller, F.J. DiSalvo, G.W. Coates, H.D. Abruña, Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies, Chemical Reviews, 122 (2022) 6117-6321.
[31] K. Kinoshita, Electrochemical Oxygen Technology, Wiley, New York, 1992.
[32] G. Hoogers, D. Thompsett, Catalysis in proton exchange membrane fuel cell technology, Cattech, 3 (1999) 106-124.
[33] M. Chatenet, L. Genies-Bultel, M. Aurousseau, R. Durand, F. Andolfatto, Oxygen reduction on silver catalysts in solutions containing various concentrations of sodium hydroxide – comparison with platinum, Journal of Applied Electrochemistry, 32 (2002) 1131-1140.
[34] U. Paulus, T. Schmidt, H. Gasteiger, R. Behm, Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study, Journal of Electroanalytical Chemistry, 495 (2001) 134-145.
[35] W. Xia, A. Mahmood, Z. Liang, R. Zou, S. Guo, Earth-Abundant Nanomaterials for Oxygen Reduction, Angewandte Chemie International Edition, 55 (2016) 2650-2676.
[36] W. Chen, Q. Xiang, T. Peng, C. Song, W. Shang, T. Deng, J. Wu, Reconsidering the Benchmarking Evaluation of Catalytic Activity in Oxygen Reduction Reaction, iScience, 23 (2020) 101532.
[37] S.B. Beale, Calculation procedure for mass transfer in fuel cells, Journal of Power Sources, 128 (2004) 185-192.
[38] E.B. Fox, H.R. Colón-Mercado, Mass Transport Limitations in Proton Exchange Membrane Fuel Cells and Electrolyzers, 2011.
[39] R. Wang, Z. Chen, N. Hu, C. Xu, Z. Shen, J. Liu, Nanocarbon-Based Electrocatalysts for Rechargeable Aqueous Li/Zn-Air Batteries, ChemElectroChem, 5 (2018) 1745-1763.
[40] Y. Chen, S. Ji, C. Chen, Q. Peng, D. Wang, Y. Li, Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications, Joule, 2 (2018) 1242-1264.
[41] J. Wang, Z. Li, Y. Wu, Y. Li, Fabrication of Single-Atom Catalysts with Precise Structure and High Metal Loading, Advanced Materials, 30 (2018) 1801649.
[42] S. Sun, G. Zhang, N. Gauquelin, N. Chen, J. Zhou, S. Yang, W. Chen, X. Meng, D. Geng, M.N. Banis, R. Li, S. Ye, S. Knights, G.A. Botton, T.-K. Sham, X. Sun, Single-atom Catalysis Using Pt/Graphene Achieved through Atomic Layer Deposition, Scientific Reports, 3 (2013) 1775.
[43] H. Yan, H. Cheng, H. Yi, Y. Lin, T. Yao, C. Wang, J. Li, S. Wei, J. Lu, Single-Atom Pd1/Graphene Catalyst Achieved by Atomic Layer Deposition: Remarkable Performance in Selective Hydrogenation of 1,3-Butadiene, Journal of the American Chemical Society, 137 (2015) 10484-10487.
[44] S. Vajda, M.G. White, Catalysis Applications of Size-Selected Cluster Deposition, ACS Catalysis, 5 (2015) 7152-7176.
[45] H. Wei, K. Huang, D. Wang, R. Zhang, B. Ge, J. Ma, B. Wen, S. Zhang, Q. Li, M. Lei, C. Zhang, J. Irawan, L.-M. Liu, H. Wu, Iced photochemical reduction to synthesize atomically dispersed metals by suppressing nanocrystal growth, Nature Communications, 8 (2017) 1490.
[46] L. Lin, W. Zhou, R. Gao, S. Yao, X. Zhang, W. Xu, S. Zheng, Z. Jiang, Q. Yu, Y.-W. Li, C. Shi, X.-D. Wen, D. Ma, Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts, Nature, 544 (2017) 80-83.
[47] B. Qiao, J. Liu, Y.-G. Wang, Q. Lin, X. Liu, A. Wang, J. Li, T. Zhang, J. Liu, Highly Efficient Catalysis of Preferential Oxidation of CO in H2-Rich Stream by Gold Single-Atom Catalysts, ACS Catalysis, 5 (2015) 6249-6254.
[48] Y. Shi, C. Zhao, H. Wei, J. Guo, S. Liang, A. Wang, T. Zhang, J. Liu, T. Ma, Single-Atom Catalysis in Mesoporous Photovoltaics: The Principle of Utility Maximization, Advanced Materials, 26 (2014) 8147-8153.
[49] C. Zhao, X. Dai, T. Yao, W. Chen, X. Wang, J. Wang, J. Yang, S. Wei, Y. Wu, Y. Li, Ionic Exchange of Metal–Organic Frameworks to Access Single Nickel Sites for Efficient Electroreduction of CO2, Journal of the American Chemical Society, 139 (2017) 8078-8081.
[50] P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin, W. Liu, H. Ju, J. Zhu, X. Hong, Z. Deng, G. Zhou, S. Wei, Y. Li, Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts, Angewandte Chemie International Edition, 55 (2016) 10800-10805.
[51] J. Wang, Z. Huang, W. Liu, C. Chang, H. Tang, Z. Li, W. Chen, C. Jia, T. Yao, S. Wei, Y. Wu, Y. Li, Design of N-Coordinated Dual-Metal Sites: A Stable and Active Pt-Free Catalyst for Acidic Oxygen Reduction Reaction, Journal of the American Chemical Society, 139 (2017) 17281-17284.
[52] X. Wang, W. Chen, L. Zhang, T. Yao, W. Liu, Y. Lin, H. Ju, J. Dong, L. Zheng, W. Yan, X. Zheng, Z. Li, X. Wang, J. Yang, D. He, Y. Wang, Z. Deng, Y. Wu, Y. Li, Uncoordinated Amine Groups of Metal–Organic Frameworks to Anchor Single Ru Sites as Chemoselective Catalysts toward the Hydrogenation of Quinoline, Journal of the American Chemical Society, 139 (2017) 9419-9422.
[53] E. Fabbri, A. Habereder, K. Waltar, R. Kötz, T.J. Schmidt, Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction, Catalysis Science & Technology, 4 (2014) 3800-3821.
[54] S. Trasatti, Electrocatalysis by oxides — Attempt at a unifying approach, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 111 (1980) 125-131.
[55] D. Chen, J. Zhu, Z. Pu, S. Mu, Anion Modulation of Pt-Group Metals and Electrocatalysis Applications, Chemistry – A European Journal, 27 (2021) 12257-12271.
[56] B. He, Q. Deng, Y.-C. Wang, Y.-W. Tang, Q.-L. Hao, H.-K. Liu, Z. Su, Modification of surface electronic structure via Ru-doping: Porous Ru–CoFeP nanocubes to boost the oxygen evolution reaction, Journal of Power Sources, 537 (2022) 231506.
[57] D. Zanders, J. Obenlüneschloß, J.-L. Wree, J. Jagosz, P. Kaur, N. Boysen, D. Rogalla, A. Kostka, C. Bock, D. Öhl, M. Gock, W. Schuhmann, A. Devi, Unveiling Ruthenium(II) Diazadienyls for Gas Phase Deposition Processes: Low Resistivity Ru Thin Films and Their Performance in the Acidic Oxygen Evolution Reaction, Advanced Materials Interfaces, n/a 2201709.
[58] H. Hwang, T. Kwon, H.Y. Kim, J. Park, A. Oh, B. Kim, H. Baik, S.H. Joo, K. Lee, Ni@Ru and NiCo@Ru Core–Shell Hexagonal Nanosandwiches with a Compositionally Tunable Core and a Regioselectively Grown Shell, Small, 14 (2018) 1702353.
[59] M. You, X. Du, X. Hou, Z. Wang, Y. Zhou, H. Ji, L. Zhang, Z. Zhang, S. Yi, D. Chen, In-situ growth of ruthenium-based nanostructure on carbon cloth for superior electrocatalytic activity towards HER and OER, Applied Catalysis B: Environmental, 317 (2022) 121729.
[60] Y. Lin, L. Zhao, L. Wang, Y. Gong, Ruthenium-doped NiFe-based metal–organic framework nanoparticles as highly efficient catalysts for the oxygen evolution reaction, Dalton Transactions, 50 (2021) 4280-4287.
[61] J.-C. Liu, Y. Tang, Y.-G. Wang, T. Zhang, J. Li, Theoretical understanding of the stability of single-atom catalysts, National Science Review, 5 (2018) 638-641.
[62] X. Duan, P. Li, D. Zhou, S. Wang, H. Liu, Z. Wang, X. Zhang, G. Yang, Z. Zhang, G. Tan, Y. Li, L. Xu, W. Liu, Z. Xing, Y. Kuang, X. Sun, Stabilizing single-atomic ruthenium by ferrous ion doped NiFe-LDH towards highly efficient and sustained water oxidation, Chemical Engineering Journal, 446 (2022) 136962.
[63] P. Zhai, M. Xia, Y. Wu, G. Zhang, J. Gao, B. Zhang, S. Cao, Y. Zhang, Z. Li, Z. Fan, C. Wang, X. Zhang, J.T. Miller, L. Sun, J. Hou, Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting, Nature Communications, 12 (2021) 4587.
[64] C. Rong, X. Shen, Y. Wang, L. Thomsen, T. Zhao, Y. Li, X. Lu, R. Amal, C. Zhao, Electronic Structure Engineering of Single-Atom Ru Sites via Co–N4 Sites for Bifunctional pH-Universal Water Splitting, Advanced Materials, 34 (2022) 2110103.
[65] V.H. Hoa, D.T. Tran, S. Prabhakaran, D.H. Kim, N. Hameed, H. Wang, N.H. Kim, J.H. Lee, Ruthenium single atoms implanted continuous MoS2-Mo2C heterostructure for high-performance and stable water splitting, Nano Energy, 88 (2021) 106277.
[66] L. Cao, Q. Luo, J. Chen, L. Wang, Y. Lin, H. Wang, X. Liu, X. Shen, W. Zhang, W. Liu, Z. Qi, Z. Jiang, J. Yang, T. Yao, Dynamic oxygen adsorption on single-atomic Ruthenium catalyst with high performance for acidic oxygen evolution reaction, Nature Communications, 10 (2019) 4849.
[67] H. Xu, D. Cheng, D. Cao, X.C. Zeng, A universal principle for a rational design of single-atom electrocatalysts, Nature Catalysis, 1 (2018) 339-348.
[68] M. Jiang, F. Wang, F. Yang, H. He, J. Yang, W. Zhang, J. Luo, J. Zhang, C. Fu, Rationalization on high-loading iron and cobalt dual metal single atoms and mechanistic insight into the oxygen reduction reaction, Nano Energy, 93 (2022) 106793.
[69] D. Wang, M. Yuan, J. Xu, Y. Li, K. Shi, H. Yang, H. Li, G. Sun, Highly Active Atomically Dispersed Co–Nx Sites Anchored on Ultrathin N-Doped Carbon Nanosheets with Durability Oxygen Reduction Reaction of Zinc–Air Batteries, ACS Sustainable Chemistry & Engineering, 9 (2021) 16956-16964.
[70] C. Zhu, Q. Shi, B.Z. Xu, S. Fu, G. Wan, C. Yang, S. Yao, J. Song, H. Zhou, D. Du, S.P. Beckman, D. Su, Y. Lin, Hierarchically Porous M–N–C (M = Co and Fe) Single-Atom Electrocatalysts with Robust MNx Active Moieties Enable Enhanced ORR Performance, Advanced Energy Materials, 8 (2018) 1801956.
[71] T. Shen, X. Huang, S. Xi, W. Li, S. Sun, Y. Hou, The ORR electron transfer kinetics control via Co-Nx and graphitic N sites in cobalt single atom catalysts in alkaline and acidic media, Journal of Energy Chemistry, 68 (2022) 184-194.
[72] J. Gao, Y. Hu, Y. Wang, X. Lin, K. Hu, X. Lin, G. Xie, X. Liu, K.M. Reddy, Q. Yuan, H.-J. Qiu, MOF Structure Engineering to Synthesize CoNC Catalyst with Richer Accessible Active Sites for Enhanced Oxygen Reduction, Small, 17 (2021) 2104684.
[73] X. Liu, M. Antonietti, Moderating Black Powder Chemistry for the Synthesis of Doped and Highly Porous Graphene Nanoplatelets and Their Use in Electrocatalysis, Advanced Materials, 25 (2013) 6284-6290.
[74] X. Liu, C. Giordano, M. Antonietti, A Facile Molten-Salt Route to Graphene Synthesis, Small, 10 (2014) 193-200.
[75] F. D’Acapito, X-Ray Absorption Spectroscopy (XAS) Applied to Cultural Heritage, in: S. D'Amico, V. Venuti (Eds.) Handbook of Cultural Heritage Analysis, Springer International Publishing, Cham, 2022, pp. 45-67.
[76] Z. Németh, É.G. Bajnóczi, B. Csilla, G. Vankó, Laboratory EXAFS determined structure of the stable complexes in the ternary Ni(ii)–EDTA–CN− system, Physical Chemistry Chemical Physics, 21 (2019) 9239-9245.
[77] H. Adabi, A. Shakouri, N. Ul Hassan, J.R. Varcoe, B. Zulevi, A. Serov, J.R. Regalbuto, W.E. Mustain, High-performing commercial Fe–N–C cathode electrocatalyst for anion-exchange membrane fuel cells, Nature Energy, 6 (2021) 834-843.
[78] C. Zhang, J. Sha, H. Fei, M. Liu, S. Yazdi, J. Zhang, Q. Zhong, X. Zou, N. Zhao, H. Yu, Z. Jiang, E. Ringe, B.I. Yakobson, J. Dong, D. Chen, J.M. Tour, Single-Atomic Ruthenium Catalytic Sites on Nitrogen-Doped Graphene for Oxygen Reduction Reaction in Acidic Medium, ACS Nano, 11 (2017) 6930-6941.
[79] C. Wang, H. Shang, J. Li, Y. Wang, H. Xu, C. Wang, J. Guo, Y. Du, Ultralow Ru doping induced interface engineering in MOF derived ruthenium-cobalt oxide hollow nanobox for efficient water oxidation electrocatalysis, Chemical Engineering Journal, 420 (2021) 129805.
[80] C.-Z. Yuan, Y.-F. Jiang, Z.-W. Zhao, S.-J. Zhao, X. Zhou, T.-Y. Cheang, A.-W. Xu, Molecule-Assisted Synthesis of Highly Dispersed Ultrasmall RuO2 Nanoparticles on Nitrogen-Doped Carbon Matrix as Ultraefficient Bifunctional Electrocatalysts for Overall Water Splitting, ACS Sustainable Chemistry & Engineering, 6 (2018) 11529-11535.
[81] Z. Zhang, H. Wang, M. Ma, H. Liu, Z. Zhang, W. Zhou, H. Liu, Integrating NiMoO wafer as a heterogeneous ‘turbo’ for engineering robust Ru-based electrocatalyst for overall water splitting, Chemical Engineering Journal, 420 (2021) 127686.
[82] J. Xu, J. Li, Z. Lian, A. Araujo, Y. Li, B. Wei, Z. Yu, O. Bondarchuk, I. Amorim, V. Tileli, B. Li, L. Liu, Atomic-Step Enriched Ruthenium–Iridium Nanocrystals Anchored Homogeneously on MOF-Derived Support for Efficient and Stable Oxygen Evolution in Acidic and Neutral Media, ACS Catalysis, 11 (2021) 3402-3413.
[83] L. Ai, Y. Wang, Y. Luo, Y. Tian, S. Yang, M. Chen, J. Jiang, Robust interfacial Ru-RuO2 heterostructures for highly efficient and ultrastable oxygen evolution reaction and overall water splitting in acidic media, Journal of Alloys and Compounds, 902 (2022) 163787.
[84] S. Hao, M. Liu, J. Pan, X. Liu, X. Tan, N. Xu, Y. He, L. Lei, X. Zhang, Dopants fixation of Ruthenium for boosting acidic oxygen evolution stability and activity, Nature Communications, 11 (2020) 5368.
[85] A. Tougerti, S. Cristol, E. Berrier, V. Briois, C. La Fontaine, F. Villain, Y. Joly, XANES study of rhenium oxide compounds at theL1andL3absorption edges, Physical Review B, 85 (2012).
[86] H. Wei, X. Liu, A. Wang, L. Zhang, B. Qiao, X. Yang, Y. Huang, S. Miao, J. Liu, T. Zhang, FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes, Nat Commun, 5 (2014) 5634.
[87] J.N. Tiwari, A.M. Harzandi, M. Ha, S. Sultan, C.W. Myung, H.J. Park, D.Y. Kim, P. Thangavel, A.N. Singh, P. Sharma, S.S. Chandrasekaran, F. Salehnia, J.W. Jang, H.S. Shin, Z. Lee, K.S. Kim, High‐Performance Hydrogen Evolution by Ru Single Atoms and Nitrided‐Ru Nanoparticles Implanted on N‐Doped Graphitic Sheet, Advanced Energy Materials, (2019).
[88] H. Chen, X. Ai, W. Liu, Z. Xie, W. Feng, W. Chen, X. Zou, Promoting Subordinate, Efficient Ruthenium Sites with Interstitial Silicon for Pt-Like Electrocatalytic Activity, Angew Chem Int Ed Engl, 58 (2019) 11409-11413.
[89] J. Wu, H. Zhou, Q. Li, M. Chen, J. Wan, N. Zhang, L. Xiong, S. Li, B.Y. Xia, G. Feng, M. Liu, L. Huang, Densely Populated Isolated Single CoN Site for Efficient Oxygen Electrocatalysis, Advanced Energy Materials, 9 (2019).
[90] L. Bai, C.S. Hsu, D.T.L. Alexander, H.M. Chen, X. Hu, A Cobalt-Iron Double-Atom Catalyst for the Oxygen Evolution Reaction, J Am Chem Soc, 141 (2019) 14190-14199.
[91] L. Bai, Z. Duan, X. Wen, R. Si, Q. Zhang, J. Guan, Highly Dispersed Ruthenium-Based Multifunctional Electrocatalyst, ACS Catalysis, 9 (2019) 9897-9904.
[92] H. Fei, J. Dong, M.J. Arellano-Jimenez, G. Ye, N. Dong Kim, E.L. Samuel, Z. Peng, Z. Zhu, F. Qin, J. Bao, M.J. Yacaman, P.M. Ajayan, D. Chen, J.M. Tour, Atomic cobalt on nitrogen-doped graphene for hydrogen generation, Nat Commun, 6 (2015) 8668.
[93] L. Zhang, A. Wang, W. Wang, Y. Huang, X. Liu, S. Miao, J. Liu, T. Zhang, Co–N–C Catalyst for C–C Coupling Reactions: On the Catalytic Performance and Active Sites, ACS Catalysis, 5 (2015) 6563-6572.
[94] R. Siburian, C. Simanjuntak, M. Supeno, S. Lumbanraja, H. Sihotang, New route to synthesize of graphene nano sheets, (2018).
[95] X.Y. Liu, M. Huang, H.L. Ma, Z.Q. Zhang, J.M. Gao, Y.L. Zhu, X.J. Han, X.Y. Guo, Preparation of a carbon-based solid acid catalyst by sulfonating activated carbon in a chemical reduction process, Molecules, 15 (2010) 7188-7196.
[96] C. Miry, E. Ngameni, F. Gloaguen, M. L’Her, Why Cobalt macrocyclic complexes are not efficient catalysts for the oxygen reduction reaction, under acidic conditions, Electrochimica Acta, 358 (2020) 136854.
[97] Y. Stubrov, A. Nikolenko, V. Strelchuk, S. Nedilko, V. Chornii, Structural modification of single-layer graphene under laser irradiation featured by micro-Raman spectroscopy, Nanoscale research letters, 12 (2017) 1-6.
[98] M. Peña-Álvarez, E. del Corro, F. Langa, V.G. Baonza, M. Taravillo, Morphological changes in carbon nanohorns under stress: a combined Raman spectroscopy and TEM study, RSC advances, 6 (2016) 49543-49550.
[99] M. Peña-Álvarez, E.d. Corro, F. Langa, V.G. Baonza, M. Taravillo, Morphological changes in carbon nanohorns under stress: a combined Raman spectroscopy and TEM study, RSC Advances, 6 (2016) 49543-49550.
[100] L. Li, B. An, A. Lahiri, P. Wang, Y. Fang, Doublet of D and 2D bands in graphene deposited with Ag nanoparticles by surface enhanced Raman spectroscopy, Carbon, 65 (2013) 359-364.
[101] H. Miao, S. Li, Z. Wang, S. Sun, M. Kuang, Z. Liu, J. Yuan, Enhancing the pyridinic N content of Nitrogen-doped graphene and improving its catalytic activity for oxygen reduction reaction, International Journal of Hydrogen Energy, 42 (2017) 28298-28308.
[102] X.-R. Wang, J.-Y. Liu, Z.-W. Liu, W.-C. Wang, J. Luo, X.-P. Han, X.-W. Du, S.-Z. Qiao, J. Yang, Identifying the Key Role of Pyridinic-N–Co Bonding in Synergistic Electrocatalysis for Reversible ORR/OER, Advanced Materials, 30 (2018) 1800005.
[103] J. Quílez-Bermejo, M. Melle-Franco, E. San-Fabián, E. Morallón, D. Cazorla-Amorós, Towards understanding the active sites for the ORR in N-doped carbon materials through fine-tuning of nitrogen functionalities: an experimental and computational approach, Journal of Materials Chemistry A, 7 (2019) 24239-24250.
[104] B. Huang, M. Wang, C. Wu, L. Guan, Highly Dispersive Metal Atoms Anchored on Carbon Matrix Obtained by Direct Rapid Pyrolysis of Metal Complexes, CCS Chemistry, 4 (2022) 2968-2979.
[105] M. Park, J.S. Choi, L. Yang, H. Lee, Raman Spectra Shift of Few-Layer IV-VI 2D Materials, Scientific Reports, 9 (2019) 19826.
[106] O. Beyssac, M. Lazzeri, Application of Raman spectroscopy to the study of graphitic carbons in the Earth Sciences, European Mineralogical Union Notes in Mineralogy, 12 (2012) 415-454.
[107] G.A. Ferrero, K. Preuss, A.B. Fuertes, M. Sevilla, M.M. Titirici, The influence of pore size distribution on the oxygen reduction reaction performance in nitrogen doped carbon microspheres, Journal of Materials Chemistry A, 4 (2016) 2581-2589.
[108] T.J. Bandosz, Revealing the impact of small pores on oxygen reduction on carbon electrocatalysts: A journey through recent findings, Carbon, 188 (2022) 289-304.
[109] H.A. Firouzjaie, W.E. Mustain, Catalytic Advantages, Challenges, and Priorities in Alkaline Membrane Fuel Cells, ACS Catalysis, 10 (2020) 225-234.
[110] T.J. Omasta, L. Wang, X. Peng, C.A. Lewis, J.R. Varcoe, W.E. Mustain, Importance of balancing membrane and electrode water in anion exchange membrane fuel cells, Journal of Power Sources, 375 (2018) 205-213.
[111] X. Peng, D. Kulkarni, Y. Huang, T.J. Omasta, B. Ng, Y. Zheng, L. Wang, J.M. LaManna, D.S. Hussey, J.R. Varcoe, I.V. Zenyuk, W.E. Mustain, Using operando techniques to understand and design high performance and stable alkaline membrane fuel cells, Nature Communications, 11 (2020) 3561.
[112] T. Wang, L. Shi, J. Wang, Y. Zhao, B.P. Setzler, S. Rojas-Carbonell, Y. Yan, High-Performance Hydroxide Exchange Membrane Fuel Cells through Optimization of Relative Humidity, Backpressure and Catalyst Selection, Journal of The Electrochemical Society, 166 (2019) F3305.
[113] T.-H. Hsieh, S.-N. Chen, Y.-Z. Wang, K.-S. Ho, J.-K. Chuang, L.-C. Ho, Cobalt-Doped Carbon Nitride Frameworks Obtained from Calcined Aromatic Polyimines as Cathode Catalyst of Anion Exchange Membrane Fuel Cells, Membranes, 12 (2022) 74.
[114] Y. Kumar, E. Kibena-Põldsepp, J. Kozlova, M. Rähn, A. Treshchalov, A. Kikas, V. Kisand, J. Aruväli, A. Tamm, J.C. Douglin, S.J. Folkman, I. Gelmetti, F.A. Garcés-Pineda, J.R. Galán-Mascarós, D.R. Dekel, K. Tammeveski, Bifunctional Oxygen Electrocatalysis on Mixed Metal Phthalocyanine-Modified Carbon Nanotubes Prepared via Pyrolysis, ACS Applied Materials & Interfaces, 13 (2021) 41507-41516.
[115] M. Sharma, J.-H. Jang, D.Y. Shin, J.A. Kwon, D.-H. Lim, D. Choi, H. Sung, J. Jang, S.-Y. Lee, K.Y. Lee, H.-Y. Park, N. Jung, S.J. Yoo, Work function-tailored graphene via transition metal encapsulation as a highly active and durable catalyst for the oxygen reduction reaction, Energ Environ Sci, 12 (2019) 2200-2211.
[116] X. Peng, T.J. Omasta, E. Magliocca, L. Wang, J.R. Varcoe, W.E. Mustain, Nitrogen-doped Carbon–CoOx Nanohybrids: A Precious Metal Free Cathode that Exceeds 1.0 W cm−2 Peak Power and 100 h Life in Anion-Exchange Membrane Fuel Cells, Angewandte Chemie International Edition, 58 (2019) 1046-1051.

無法下載圖示 全文公開日期 2024/12/31 (校內網路)
全文公開日期 2024/12/31 (校外網路)
全文公開日期 2024/12/31 (國家圖書館:臺灣博碩士論文系統)
QR CODE